Graph Paths

CSE 373 - Data Structures

Readings and References

» Reading

> Section 9.3, Data Structures and Algorithm Analysis in C, Weiss

e Other References

May 24, 2002
Path Simple Paths and Cycles

» Apath is alist of vertices{ v4, V,, .., v} such
that (v;, v;,,) iIsinEforall0 < i < n.

Chicago

p = {Seattle,
Salt Lake City,
Chicago, Dallas,
San Francisco}

()salt Lake City

San Francisco

Dallas
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A simple path repeats no vertices

> eg: {Seattle, Salt Lake City, San Francisco}

A cycle is a path that starts and ends at the
same vertex:

> {Seattle, Salt Lake City, San Francisco, Seattle}
A simple cycle is a cycle that repeats no
vertices and the first vertex is also the last

A directed acyclic graph (DAG) is a directed
graph with no cycles
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Connected

» G is connected if there is a path between every
pair of distinct vertices in the graph

A graph which is not connected is the union of
two or more connected subgraphs
> the subgraphs partition the graph G
> the subgraphs are the connected components of G

> note that the connected components are not
connected to each other, but are themselves
connected graphs
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Undirected Connected Graph
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Connected Components of G
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Path cost and Path length

 Path cost: the sum of the costs of each edge

 Path length: the number of edges in the path
> Path length is the unweighted path cost (each edge = 1)

length(p) =5

San Francisco cost(p) = 11.5

Dallas
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Shortest Path Problems

» Given agraph G = (V, E) and a “source”
vertex s in V, find the minimum cost paths
from s to every vertex in V

e Many variations:
> unweighted vs. weighted
> cyclic vs. acyclic
> pos. weights only vs. pos. and neg. weights
> etc
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Why study shortest path problems?

» Traveling on a budget: What is the cheapest
airline schedule from Seattle to city X?
« Optimizing routing of packets on the internet:
> Vertices are routers and edges are network links
with different delays. What is the routing path
with smallest total delay?
 Shipping: Find which highways and roads to
take to minimize total delay due to traffic
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Unweighted Shortest Path Problem

Problem: Given a “source” vertex s in an unweighted graph
G = (V,E), find the shortest path from s to all vertices in G
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Breadth-First Search Solution

 Basic Idea: Starting at node s, find vertices
that can be reached using 0, 1, 2, 3, ..., N-1
edges (works even for cyclic graphs!)
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Breadth-First Search Algorithm

Uses a queue to track vertices that are “nearby”
source vertex is s
Di stance[s] = 0
Enqueue(s)
Wil e queue i's not enpty Fore:_:\chedgeincident
X = dequeue a vertex
For each vertex Y that is (adjacent to X and not
previously visited)
Di stance[Y] = Distance[X] + 1
Pr evi ous[ Y] X
Enqueue Y
Running time (same as topological sort) = O(|V| + |E|)
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What if edges have weights?

» Breadth First Search does not work anymore

> minimum cost path may have more edges than
minimum length path

Shortest path from () 2 3

Cto A: 1y

C—>A (cost=9) 3 1
4

Minimum Cost &

Path=C>E->D->A ‘

(cost = 8) 3
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Dijkstra’s Algorithm for Weighted
Shortest Path

* Classic algorithm for solving shortest path in
weighted graphs (without negative weights)

» A greedy algorithm (irrevocably makes decisions
without considering future consequences)

» Each vertex has a cost for path from initial vertex
» Greedy choice — always expand to the least cost
vertex

> a vertex already visited may be updated if a better path to
it is found before it is added to the distinguished set
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Dijkstra’s Shortest Path Algorithm

 |nitialize the cost of initial node to 0, and all the
rest of the nodes to o

* Initialize set S to be [
» While there are nodes left in the graph but not in S

> Select the node K with the lowest cost that is not in S and identify
the node as now being in S

> for each node A adjacent to K
« if (cost(K)+cost(K,A) < A’s currently known cost
— set cost(A) = cost(K)+cost(K,A)
— set previous(A) = K so that we can remember the path
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A weighted directed graph
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Dijkstra example

s? d, P|S? d, P|S? d, P|S? d, P|S? d, P|S? d, P |S? d, P
vwi* 0 -y* 0 -y* 0 -|* 0 —-|* 0 —-|* 0 —-|* 0 -
v, 2 v 2 v |2 v |2 v |2 v 2 oyt 2 oy
A 00 3 v, 3 v, 3 v | * 3 v, |* 3 v |* 3 v
v, Iov | * 1 v |* 1 vi|* 1 vi|* 1 vp|* 1 vy * 1 v
Vg 00 3 v, 3 v | * 3 v | * 3 v |* 3 v|* 3 v
A 0 9 v, 9 v, 9 v, 8 v, 6 v,|* 6 v
A 0 5 v, 5 v, 5 v, 5 v | * 5 v |* 5 vy

Analysis of Dijkstra’s Algorithm

While there are nodes left in the graph but not in S «— V] times
Select the node K with the lowest cost that is not in Sand <+— O(|V/|)
identify the node as now being in S
for each node A adjacent to K <

if (cost(K)+cost(K,A) < A’s currently known cost
set cost(A) = cost(K)+cost(K,A)
set previous(A) = K so that we can remember the
path

Total time = |V| (O(|V|)) +O(|E|) = O(|V|? + |E|)
Dense graph: |[E| = ©(|V|?) = Total time = O(|V|?) = O(|E|)
Sparse graph: |E| = ©(|V|) = Total time = O(|V|?) = O(|E|?)

Quadratic! Can we do better?
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O(|E]) total

Analysis of Dijkstra’s Algorithm

Yes! Use a priority queue to store vertices with key = cost

|V| times:
Select the unknown node N with the lowest cost

|E| times: \’ deleteMin (2)

A’s cost = N’s cost + cost of (N, A) @) ®

; decreaseKey @ ®

Total run time = O(|V| log |V| + |E| log |V])
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Does It Always Work?

 Dijkstra’s algorithm is an example of a greedy
algorithm
» Greedy algorithms always make choices that
currently seem the best
> Short-sighted — no consideration of long-term
or global issues
> Locally optimal does not always mean globally
optimal
* In Dijkstra’s case — choose the least cost node, but
what if there is another path through other vertices
that is cheapecr?
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“Cloudy” Proof

Next shortest path from

Least cost node e
inside the known cloud

THE KNOWN
CLOUD

Source

If the path to Gis the next shortest path, the path to P must be
at least as long. Note - no negative path weights!
Therefore, any path through P to Gcannot be shorter!
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Inside the Cloud (Proof)

Everything inside the cloud has the correct shortest path

Proof is by induction on the # of nodes in the cloud:
> Base case: Initial cloud is just the source with shortest path 0

> Inductive hypothesis: cloud of k-1 nodes all have shortest
paths

> Inductive step: choose the least cost node G - has to be the
shortest path to G (previous slide). Add k" node G to the
cloud
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