
Graph Paths

CSE 373 - Data Structures
May 24, 2002

20-May-02 CSE 373 - Data Structures - 21 - Short Paths 2

Readings and References

• Reading
› Section 9.3, Data Structures and Algorithm Analysis in C, Weiss

• Other References

Some slides based on: CSE 326 by S. Wolfman, 2000

20-May-02 CSE 373 - Data Structures - 21 - Short Paths 3

Path
• A path is a list of vertices {v1,v2,…,vn} such

that (vi,vi+1) is in E for all 0 ≤≤≤≤ i < n.

Seattle

San Francisco

Dallas

Chicago

Salt Lake City
p = {Seattle,
 Salt Lake City,
Chicago, Dallas,
San Francisco}

20-May-02 CSE 373 - Data Structures - 21 - Short Paths 4

Simple Paths and Cycles
• A simple path repeats no vertices

› eg: {Seattle, Salt Lake City, San Francisco}
• A cycle is a path that starts and ends at the

same vertex:
› {Seattle, Salt Lake City, San Francisco, Seattle}

• A simple cycle is a cycle that repeats no
vertices and the first vertex is also the last

• A directed acyclic graph (DAG) is a directed
graph with no cycles

20-May-02 CSE 373 - Data Structures - 21 - Short Paths 5

Connected
• G is connected if there is a path between every

pair of distinct vertices in the graph
• A graph which is not connected is the union of

two or more connected subgraphs
› the subgraphs partition the graph G
› the subgraphs are the connected components of G
› note that the connected components are not

connected to each other, but are themselves
connected graphs

20-May-02 CSE 373 - Data Structures - 21 - Short Paths 6

Undirected Connected Graph

20-May-02 CSE 373 - Data Structures - 21 - Short Paths 7

Connected Components of G

G

G1

G2

G3

20-May-02 CSE 373 - Data Structures - 21 - Short Paths 8

Path cost and Path length
• Path cost: the sum of the costs of each edge
• Path length: the number of edges in the path

› Path length is the unweighted path cost (each edge = 1)

Seattle

San Francisco
Dallas

Chicago

Salt Lake City

3.5

2 2

2.5
3

2 2.5
2.5

length(p) = 5
cost(p) = 11.5

20-May-02 CSE 373 - Data Structures - 21 - Short Paths 9

Shortest Path Problems
• Given a graph G = (V, E) and a “source”

vertex s in V, find the minimum cost paths
from s to every vertex in V

• Many variations:
› unweighted vs. weighted
› cyclic vs. acyclic
› pos. weights only vs. pos. and neg. weights
› etc

20-May-02 CSE 373 - Data Structures - 21 - Short Paths 10

Why study shortest path problems?

• Traveling on a budget: What is the cheapest
airline schedule from Seattle to city X?

• Optimizing routing of packets on the internet:
› Vertices are routers and edges are network links

with different delays. What is the routing path
with smallest total delay?

• Shipping: Find which highways and roads to
take to minimize total delay due to traffic

20-May-02 CSE 373 - Data Structures - 21 - Short Paths 11

Unweighted Shortest Path Problem

Problem: Given a “source” vertex s in an unweighted graph
G = (V,E), find the shortest path from s to all vertices in G

A

C

B

D

F H

G

E

Source

20-May-02 CSE 373 - Data Structures - 21 - Short Paths 12

Breadth-First Search Solution

• Basic Idea: Starting at node s, find vertices
that can be reached using 0, 1, 2, 3, …, N-1
edges (works even for cyclic graphs!)

A

C

B

D

F H

G

E

20-May-02 CSE 373 - Data Structures - 21 - Short Paths 13

Breadth-First Search Algorithm
• Uses a queue to track vertices that are “nearby”
• source vertex is s

Distance[s] = 0

Enqueue(s)

While queue is not empty

X = dequeue a vertex

For each vertex Y that is (adjacent to X and not
previously visited)

Distance[Y] = Distance[X] + 1

Previous[Y] = X

Enqueue Y

• Running time (same as topological sort) = O(|V| + |E|)

For each vertex

For each edge incident
with that vertex

20-May-02 CSE 373 - Data Structures - 21 - Short Paths 14

What if edges have weights?

• Breadth First Search does not work anymore
› minimum cost path may have more edges than

minimum length path

A

C

B

D

F H

G

E

2 3

2 1

1

4
2

11

93

8

3

Shortest path from
C to A:
C�A (cost = 9)

Minimum Cost
Path = C�E�D�A
(cost = 8)

20-May-02 CSE 373 - Data Structures - 21 - Short Paths 15

Dijkstra’s Algorithm for Weighted
Shortest Path

• Classic algorithm for solving shortest path in
weighted graphs (without negative weights)

• A greedy algorithm (irrevocably makes decisions
without considering future consequences)

• Each vertex has a cost for path from initial vertex
• Greedy choice – always expand to the least cost

vertex
› a vertex already visited may be updated if a better path to

it is found before it is added to the distinguished set
20-May-02 CSE 373 - Data Structures - 21 - Short Paths 16

Dijkstra’s Shortest Path Algorithm

• Initialize the cost of initial node to 0, and all the
rest of the nodes to ∞

• Initialize set S to be ∅
• While there are nodes left in the graph but not in S

› Select the node K with the lowest cost that is not in S and identify
the node as now being in S

› for each node A adjacent to K
• if (cost(K)+cost(K,A) < A’s currently known cost

– set cost(A) = cost(K)+cost(K,A)
– set previous(A) = K so that we can remember the path

20-May-02 CSE 373 - Data Structures - 21 - Short Paths 17

A weighted directed graph

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

Dijkstra example

4444447

7734446

4444445

11111114

4444443

11111112

1

5*5*5555
6*68999
3*3*3*3*33
1*1*1*1*1*1*1
3*3*3*333
2*2*2*2*2*22
0*0*0*0*0*0*0*

???????

vvvvvvv
vvvvvvv
vvvvvvv
vvvvvvvv
vvvvvvv
vvvvvvvv

v
PdSPdSPdSPdSPdSPdSPdS vvvvvvv

∞
∞
∞

∞

−−−−−−−

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

20-May-02 CSE 373 - Data Structures - 21 - Short Paths 19

Analysis of Dijkstra’s Algorithm
|V| times
O(|V|)

O(|E|) total

Total time = |V| (O(|V|)) +O(|E|) = O(|V|2 + |E|)
Dense graph: |E| = Θ(|V|2) � Total time = O(|V|2) = O(|E|)
Sparse graph: |E| = Θ(|V|) � Total time = O(|V|2) = O(|E|2)

Quadratic! Can we do better?

While there are nodes left in the graph but not in S
Select the node K with the lowest cost that is not in S and
identify the node as now being in S
for each node A adjacent to K

if (cost(K)+cost(K,A) < A’s currently known cost
set cost(A) = cost(K)+cost(K,A)
set previous(A) = K so that we can remember the
path

20-May-02 CSE 373 - Data Structures - 21 - Short Paths 20

Analysis of Dijkstra’s Algorithm

Select the unknown node N with the lowest cost

deleteMin

 A’s cost = N’s cost + cost of (N, A)

decreaseKey

|V| times:

|E| times:

Yes! Use a priority queue to store vertices with key = cost

Total run time = O(|V| log |V| + |E| log |V|)

2

4 6

7 5

20-May-02 CSE 373 - Data Structures - 21 - Short Paths 21

Does It Always Work?
• Dijkstra’s algorithm is an example of a greedy

algorithm
• Greedy algorithms always make choices that

currently seem the best
› Short-sighted – no consideration of long-term

or global issues
› Locally optimal does not always mean globally

optimal
• In Dijkstra’s case – choose the least cost node, but

what if there is another path through other vertices
that is cheaper?

20-May-02 CSE 373 - Data Structures - 21 - Short Paths 22

THE KNOWN
CLOUD

G Next shortest path from
inside the known cloud

P

“Cloudy” Proof

If the path to G is the next shortest path, the path to P must be
at least as long. Note - no negative path weights!

Therefore, any path through P to G cannot be shorter!

Source

Least cost node

20-May-02 CSE 373 - Data Structures - 21 - Short Paths 23

Inside the Cloud (Proof)

Everything inside the cloud has the correct shortest path
Proof is by induction on the # of nodes in the cloud:

› Base case: Initial cloud is just the source with shortest path 0
› Inductive hypothesis: cloud of k-1 nodes all have shortest

paths
› Inductive step: choose the least cost node G � has to be the

shortest path to G (previous slide). Add kth node G to the
cloud

