Topological Sort of a Graph

CSE 373 - Data Structures May 24, 2002

Readings and References

- Reading
 - > Section 9.2, Data Structures and Algorithm Analysis in C, Weiss
- Other References

Some slides based on: CSE 326 by S. Wolfman, 2000

24-May-02

Topological Sort

Topological Sort

Given a digraph G = (V, E), find a linear ordering of its vertices such that:

for any edge (v, w) in E, v precedes w in the ordering

Topo sort - good example

Note that F can go anywhere in this list because it is not connected.

Topo sort - bad example

Topo sort algorithm - 1

<u>Step 1</u>: Identify vertices that have no incoming edges

• The "in-degree" of these vertices is zero

Topo sort algorithm - 1a

<u>Step 1</u>: Identify vertices that have no incoming edges

- If *no such vertices*, graph has <u>cycle(s)</u> (cyclic graph)
- Topological sort not possible Halt.

Topo sort algorithm - 1b

<u>Step 1</u>: Identify vertices that have no incoming edges

• Select one such vertex

Topo sort algorithm - 2

<u>Step 2</u>: Delete this vertex of in-degree 0 and all its outgoing edges from the graph. Place it in the output.

Cook until done

Repeat <u>Step 1</u> and <u>Step 2</u> until graph is empty

B

Select B. Copy to sorted list. Delete B and its edges.

C

Select C. Copy to sorted list. Delete C and its edges.

D

Select D. Copy to sorted list. Delete D and its edges.

E, F

Select E. Copy to sorted list. Delete E and its edges. Select F. Copy to sorted list. Delete F and its edges.

$(F) \rightarrow ABCDEF$ (E)

Done

Topo sort run time analysis

Tracking "in-degree"

Calculate and store In-Degree of all vertices in an array

- \rightarrow Find vertex with in-degree 0: Search the array
- \rightarrow Remove its edges: Update the array

18

Topo Sort₁ run time

- Find vertices with in-degree 0:
 - > |V| vertices, and for each vertex it takes O(|V|)to search the In-Degree array = $O(|V|^2)$
- Remove edges:
 - \rightarrow |E| edges
- Place vertices in output:
 - > |V| vertices
- For input graph G = (V,E)
 - > Run Time = $O(|V|^2 + |E|)$
 - > Quadratic in |V|

24-May-02

We need a better way to find the next vertex with degree(v)=0 ...

Topo Sort with queue

Key idea: Initialize and maintain a *queue (or stack)* of vertices with In-Degree 0

Topo Sort with queue

After each vertex is output, when updating In-Degree array, *enqueue any vertex whose In-Degree has become zero*

Topological Sort Algorithm #2

- Store each vertex's In-Degree in an array
- Initialize queue with all "in-degree=0" vertices
- While there are vertices remaining in the queue:
 - > Dequeue and output a vertex
 - > Reduce In-Degree of all vertices adjacent to it by 1
 - > Enqueue any of these vertices whose In-Degree became zero

Topo Sort₂ run time

- Initialize In-Degree array: O(|E|)
- Initialize Queue with In-Degree 0 vertices: O(|V|)
- Dequeue and output vertex:
 - > |V| vertices, each takes only O(1) to dequeue and output: O(|V|)
- Reduce In-Degree of all vertices adjacent to a vertex and Enqueue any In-Degree 0 vertices:
 > O(|E|)
- For input graph G=(V,E) run time = O(|V| + |E|)
 - > Linear in |V|