Graph Intro

CSE 373 - Data Structures May 22, 2002

Readings and References

Reading

> Section 9.1, Data Structures and Algorithm Analysis in C, Weiss

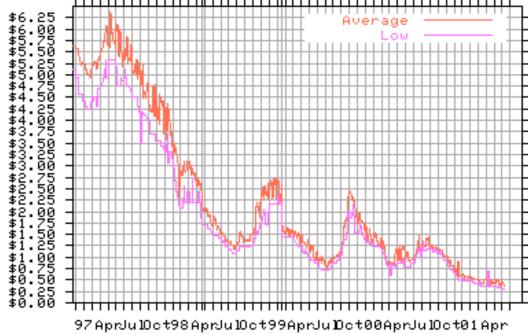
Other References

> Section 23.1, Representation of Graphs, *Intro to Algorithms*, Cormen, Leiserson, Rivest

Some slides based on: CSE 326 by S. Wolfman, 2000

What are graphs?

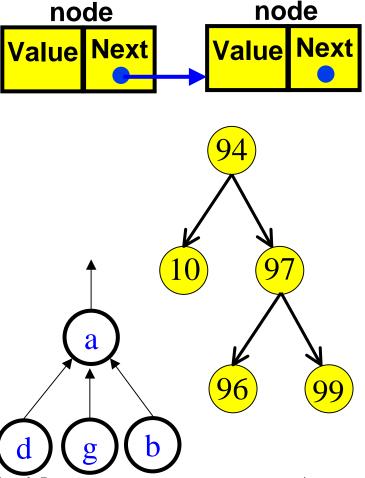
• Yes, this is a graph....



But we are interested in a different kind of "graph"

Motivation for Graphs

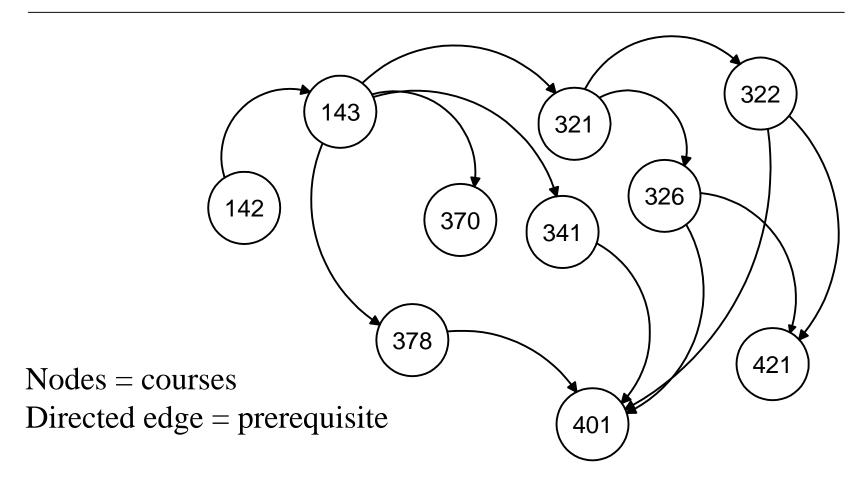
- Consider the data structures we have looked at so far...
- <u>Linked list</u>: nodes with 1 incoming edge + 1 outgoing edge
- <u>Binary trees/heaps</u>: nodes with 1 incoming edge + 2 outgoing edges
- <u>Binomial trees/B-trees</u>: nodes with 1 incoming edge + multiple outgoing edges
- <u>Up-trees</u>: nodes with multiple incoming edges + 1 outgoing edge



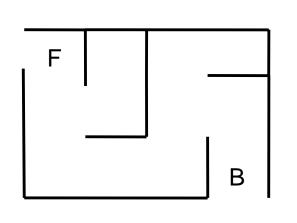
Motivation for Graphs

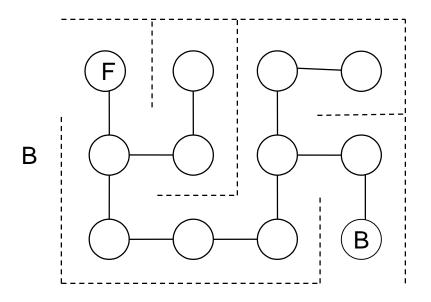
- What is common among these data structures?
- How can you generalize them?
- Consider data structures for representing the following problems...

CSE Course Prerequisites at UW



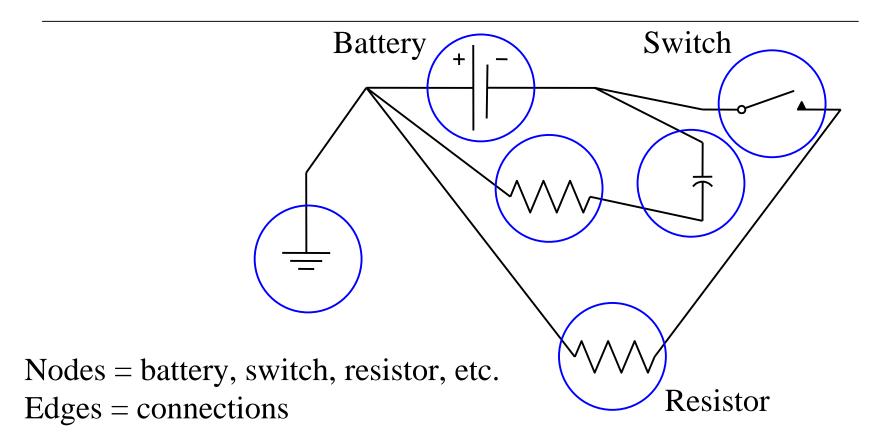
Representing a Maze



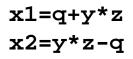


Nodes = rooms Edge = door or passage

Representing Electrical Circuits



Program statements



Naive:

q

y*z calculated twice

y

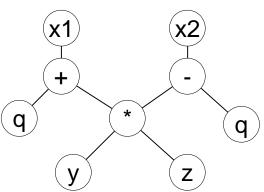
x2

q

y

z

common subexpression eliminated:



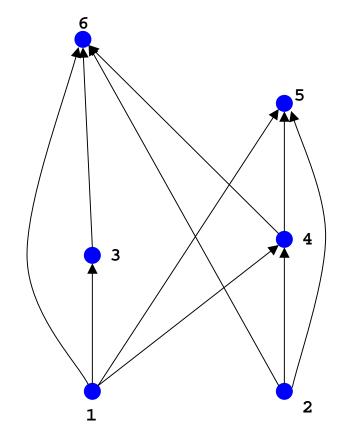
Nodes = symbols/operators Edges = relationships

Precedence

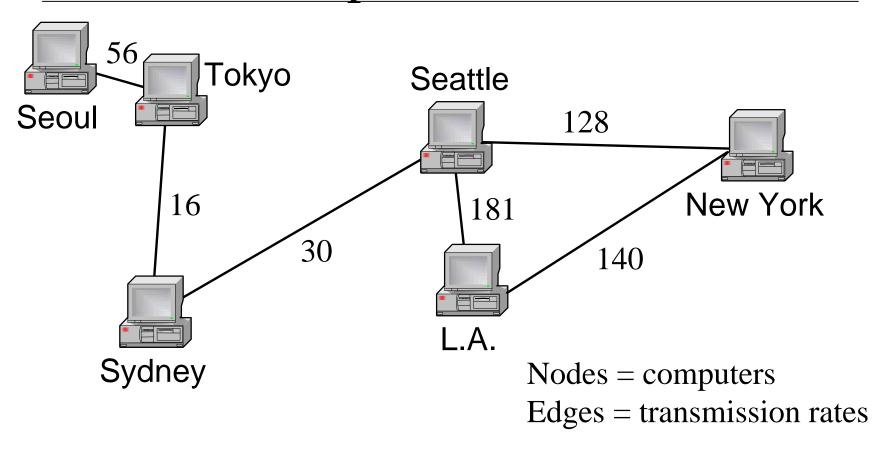
$$S_1$$
 a=0;
 S_2 b=1;
 S_3 c=a+1
 S_4 d=b+a;
 S_5 e=d+1;
 S_6 e=c+d;

Which statements must execute before S_6 ? S_1 , S_2 , S_3 , S_4

Nodes = statements Edges = precedence requirements



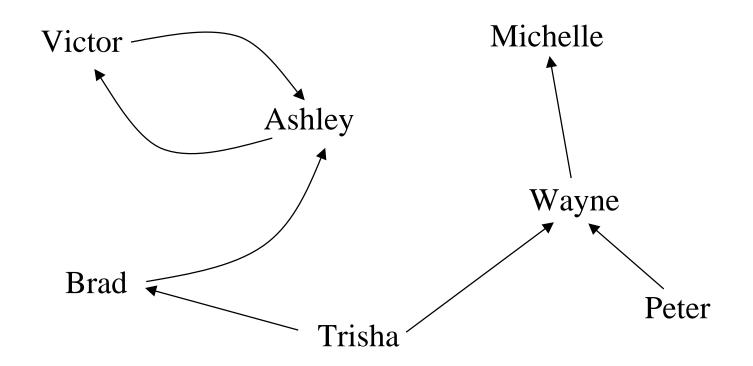
Information Transmission in a Computer Network



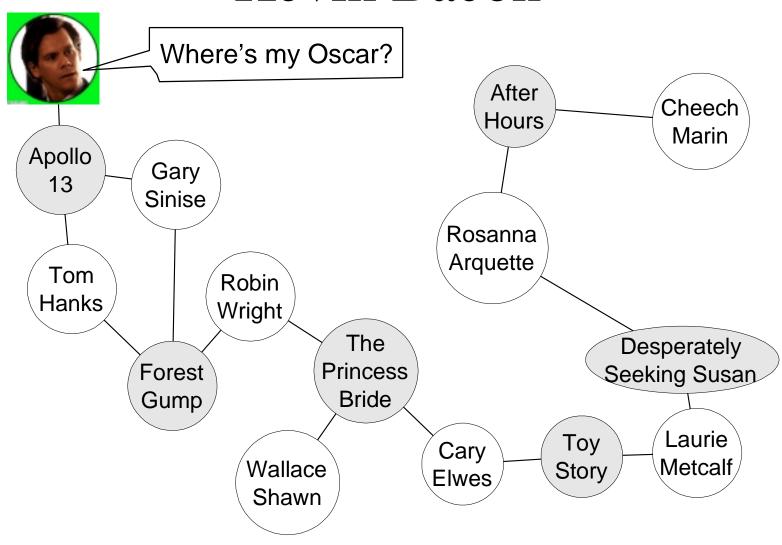
Traffic Flow on Highways

Nodes = cities Edges = # vehicles on connecting highway

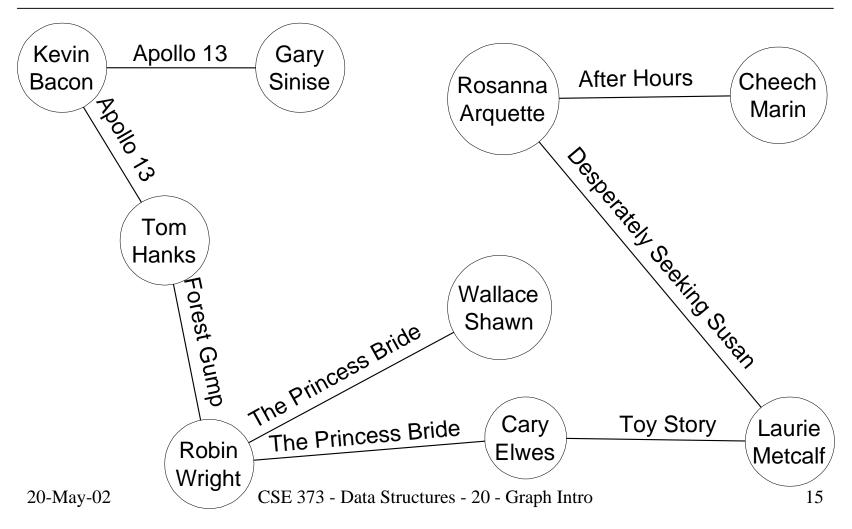
Soap Opera Relationships



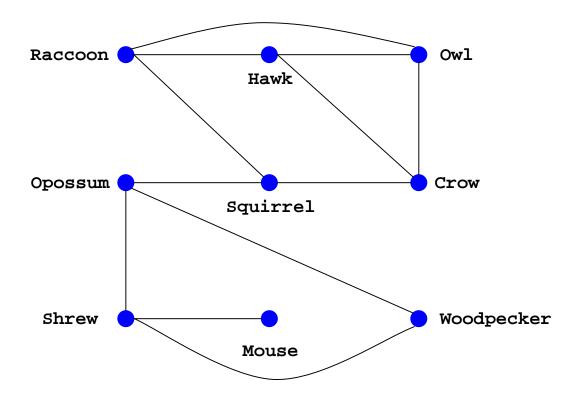
Six Degrees of Separation from Kevin Bacon



Six Degrees of Separation from Kevin Bacon



Niche overlaps



Graph Definition

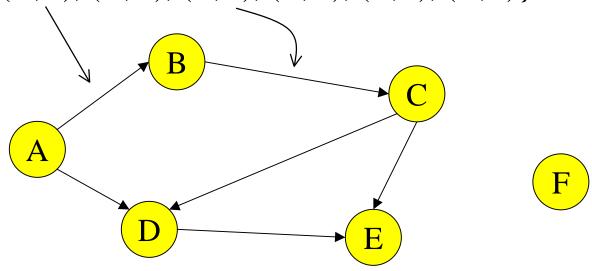
- A graph is simply a collection of nodes plus edges
 - Linked lists, trees, and heaps are all special cases of graphs
- The nodes are known as vertices (node = "vertex")
- Formal Definition: A graph G is a pair (V, E) where
 - > V is a set of vertices or nodes
 - > E is a set of edges that connect vertices

Graph Example

- Here is a graph G = (V, E)
 - \rightarrow Each <u>edge</u> is a pair (v_1, v_2) , where v_1, v_2 are vertices in V

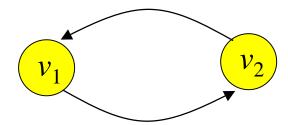
$$V = \{A, B, C, D, E, F\}$$

 $E = \{(A,B), (A,D), (B,C), (C,D), (C,E), (D,E)\}$



Directed vs Undirected Graphs

• If the order of edge pairs (v_1, v_2) matters, the graph is directed (also called a digraph): $(v_1, v_2) \neq (v_2, v_1)$



• If the order of edge pairs (v_1, v_2) does not matter, the graph is called an undirected graph: in this case, $(v_1, v_2) = (v_2, v_1)$

Undirected Terminology

- Two vertices *u* and *v* are *adjacent* in an undirected graph G if {*u*,*v*} is an edge in G
 - \rightarrow edge e = {u,v} is *incident with* vertex u and vertex v
- The degree of a vertex in an undirected graph is the number of edges incident with it
 - > a loop counts twice (both ends count)
 - \rightarrow denoted with deg(v)

Directed Terminology

- Vertex *u* is *adjacent to* vertex *v* in a directed graph G if (*u*,*v*) is an edge in G
 - \rightarrow vertex u is the initial vertex of (u,v)
- Vertex v is adjacent from vertex u
 - \rightarrow vertex v is the terminal (or end) vertex of (u,v)
- Degree
 - > *in-degree* is the number of edges with the vertex as the terminal vertex
 - > *out-degree* is the number of edges with the vertex as the initial vertex
 - > a loop adds 1 to in-degree and 1 to out-degree

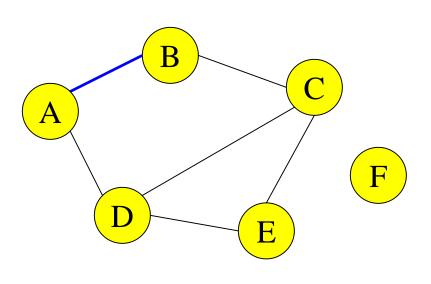
Handshaking Theorem

- Let G=(V,E) be an undirected graph with |E|=e edges
- Then $2e = \sum_{v \in V} \deg(v)$
- Every edge contributes +1 to the degree of each of the two vertices it is incident with
 - \rightarrow number of edges is exactly half the sum of deg(v)
 - \rightarrow the sum of the deg(v) values must be even

Graph Representations

- Space and time are analyzed in terms of:
 - Number of vertices = |V| and
 - Number of edges = |E|
- There are two ways of representing graphs:
 - The *adjacency matrix* representation
 - The *adjacency list* representation

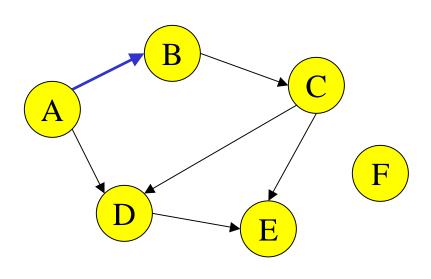
Adjacency Matrix



$$M(v, w) = \begin{cases} 1 \text{ if } (v, w) \text{ is in E} \\ 0 \text{ otherwise} \end{cases}$$

Space =
$$|V|^2$$

Adjacency Matrix for a Digraph



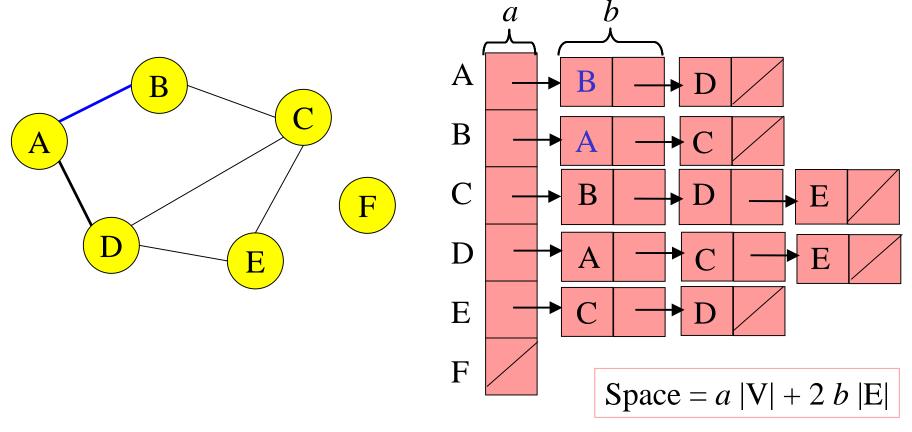
$$M(v, w) = \begin{cases} 1 \text{ if } (v, w) \text{ is in E} \\ 0 \text{ otherwise} \end{cases}$$

	A	В	C	D	E	F	
A	0	1	0	1	0	0	
В	0	0	1	0	0	0	
C	0	0	0	1	1	0	
D	0	0	0	0	1	0	
E	0	0	0	0	0	0	
F	0	0	0	0	0	0	J

Space =
$$|V|^2$$

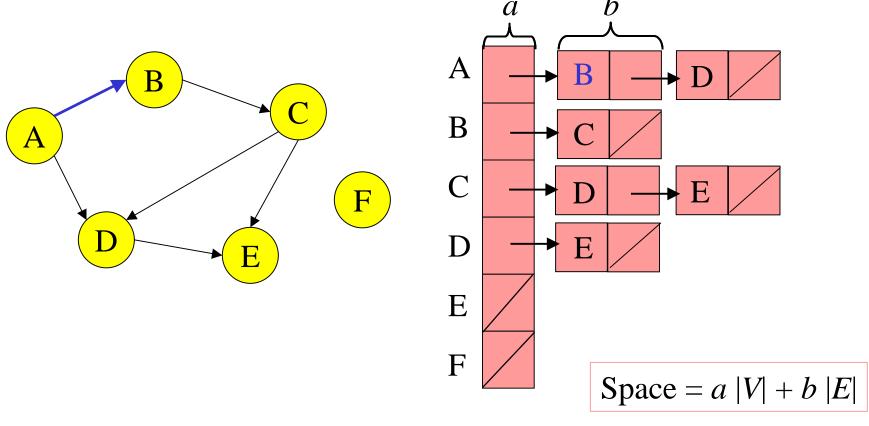
Adjacency List

For each v in V, L(v) = list of w such that (v, w) is in E



Adjacency List for a Digraph

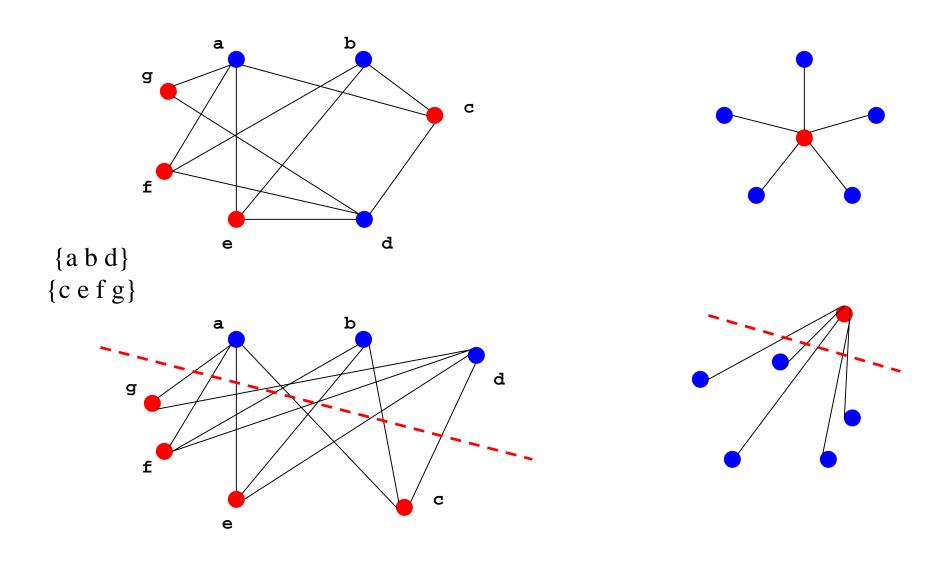
For each v in V, L(v) = list of w such that (v, w) is in E



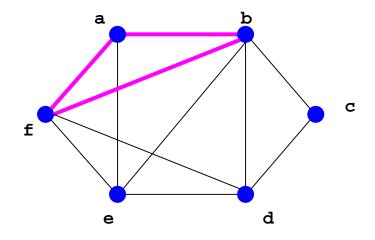
Bipartite

- A simple graph is bipartite if:
 - its vertex set V can be partitioned into two disjoint non-empty sets such that
 - every edge in the graph connects a vertex in one set to a vertex in the other set
 - which also means that no edge connects a vertex in one set to another vertex in the same set
 - > no triangular connections

Bipartite examples



Bipartite example - not



a says that b and f should be in S_2 , but b says a and f should be in S_1 . TILT!

Complete bipartite graph K_{m,n}

- vertex set partitioned into two subsets of sizes m and n
- all vertices in one subset are connected to all vertices in the other subset

