Graph Intro

CSE 373 - Data Structures
 May 22, 2002

Readings and References

- Reading
> Section 9.1, Data Structures and Algorithm Analysis in C, Weiss
- Other References
> Section 23.1, Representation of Graphs, Intro to Algorithms, Cormen, Leiserson, Rivest

Some slides based on: CSE 326 by S. Wolfman, 2000

What are graphs?

- Yes, this is a graph....

- But we are interested in a different kind of "graph"

Motivation for Graphs

- Consider the data structures we have looked at so far...
- Linked list: nodes with 1 incoming edge +1 outgoing edge
- Binary trees/heaps: nodes with 1 incoming edge +2 outgoing edges
- Binomial trees/B-trees: nodes with 1 incoming edge + multiple outgoing edges
- Up-trees: nodes with multiple incoming edges +1 outgoing edge

Motivation for Graphs

- What is common among these data structures?
- How can you generalize them?
- Consider data structures for representing the following problems...

CSE Course Prerequisites at UW

Nodes = courses
Directed edge = prerequisite

Representing a Maze

Nodes $=$ rooms
Edge $=$ door or passage

Representing Electrical Circuits

Program statements

```
x1=q+y*z
x2=y*z-q
```


Nodes $=$ symbols/operators
Edges $=$ relationships

Precedence

S_{1}	$a=0 ;$
S_{2}	$b=1 ;$
S_{3}	$c=a+1$
S_{4}	$d=b+a ;$
S_{5}	$e=d+1 ;$
S_{6}	$e=c+d ;$

Which statements must execute before S_{6} ? $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{4}$

Nodes $=$ statements
Edges $=$ precedence requirements

Information Transmission in a Computer Network

Traffic Flow on Highways

Soap Opera Relationships

Six Degrees of Separation from Kevin Bacon

Six Degrees of Separation from Kevin Bacon

Niche overlaps

Graph Definition

- A graph is simply a collection of nodes plus edges
> Linked lists, trees, and heaps are all special cases of graphs
- The nodes are known as vertices (node = "vertex")
- Formal Definition: A graph G is a pair (V, E) where
> V is a set of vertices or nodes
> E is a set of edges that connect vertices

Graph Example

- Here is a graph $G=(V, E)$
> Each edge is a pair $\left(v_{1}, v_{2}\right)$, where v_{1}, v_{2} are vertices in V

Directed vs Undirected Graphs

- If the order of edge pairs $\left(v_{1}, v_{2}\right)$ matters, the graph is directed (also called a digraph): $\left(v_{1}, v_{2}\right) \neq\left(v_{2}, v_{1}\right)$

- If the order of edge pairs $\left(v_{1}, v_{2}\right)$ does not matter, the graph is called an undirected graph: in this case, $\left(v_{1}, v_{2}\right)=\left(v_{2}, v_{1}\right)$

Undirected Terminology

- Two vertices u and v are adjacent in an undirected graph G if $\{u, v\}$ is an edge in G
> edge $\mathrm{e}=\{u, v\}$ is incident with vertex u and vertex v
- The degree of a vertex in an undirected graph is the number of edges incident with it
> a loop counts twice (both ends count)
> denoted with $\operatorname{deg}(v)$

Directed Terminology

- Vertex u is adjacent to vertex v in a directed graph G if (u, v) is an edge in G
> vertex u is the initial vertex of (u, v)
- Vertex v is adjacent from vertex u
$>$ vertex v is the terminal (or end) vertex of (u, v)
- Degree
> in-degree is the number of edges with the vertex as the terminal vertex
> out-degree is the number of edges with the vertex as the initial vertex
> a loop adds 1 to in-degree and 1 to out-degree

Handshaking Theorem

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be an undirected graph with $|\mathrm{E}|=\mathrm{e}$ edges
- Then $2 e=\sum_{v \in V} \operatorname{deg}(v)$
- Every edge contributes +1 to the degree of each of the two vertices it is incident with
, number of edges is exactly half the sum of $\operatorname{deg}(v)$
> the sum of the $\operatorname{deg}(v)$ values must be even

Graph Representations

- Space and time are analyzed in terms of:
- Number of vertices $=|V|$ and
- Number of edges $=|E|$
- There are two ways of representing graphs:
- The adjacency matrix representation
- The adjacency list representation

Adjacency Matrix

Space $=|V|^{2}$

Adjacency Matrix for a Digraph

Adjacency List

For each v in $V, L(v)=$ list of w such that (v, w) is in E

Adjacency List for a Digraph

For each v in $V, L(v)=$ list of w such that (v, w) is in E

Bipartite

- A simple graph is bipartite if:
> its vertex set V can be partitioned into two disjoint non-empty sets such that
- every edge in the graph connects a vertex in one set to a vertex in the other set
- which also means that no edge connects a vertex in one set to another vertex in the same set
> no triangular connections

Bipartite examples

$\{\mathrm{abd}\}$
\{cefg\}

Bipartite example - not

a says that b and f should be in S_{2}, but b says a and f should be in S_{1}. TILT!

Complete bipartite graph $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$

- vertex set partitioned into two subsets of sizes m and n
- all vertices in one subset are connected to all vertices in the other subset

$\mathrm{K}_{1,5}$

$\mathrm{K}_{2,3}$

$\mathrm{K}_{3,3}$

