
Graph Intro

CSE 373 - Data Structures
May 22, 2002

20-May-02 CSE 373 - Data Structures - 20 - Graph Intro 2

Readings and References

• Reading
› Section 9.1, Data Structures and Algorithm Analysis in C, Weiss

• Other References
› Section 23.1, Representation of Graphs, Intro to Algorithms,

Cormen, Leiserson, Rivest

Some slides based on: CSE 326 by S. Wolfman, 2000

20-May-02 CSE 373 - Data Structures - 20 - Graph Intro 3

What are graphs?

• Yes, this is a graph….

• But we are interested in a different kind of “graph”
20-May-02 CSE 373 - Data Structures - 20 - Graph Intro 4

Motivation for Graphs
• Consider the data structures we

have looked at so far…
• Linked list: nodes with 1 incoming

edge + 1 outgoing edge
• Binary trees/heaps: nodes with 1

incoming edge + 2 outgoing edges
• Binomial trees/B-trees: nodes with

1 incoming edge + multiple
outgoing edges

• Up-trees: nodes with multiple
incoming edges + 1 outgoing edge

a

gd b

10

96 99

94

97

Value Next
node

Value Next
node

20-May-02 CSE 373 - Data Structures - 20 - Graph Intro 5

Motivation for Graphs

• What is common among these data structures?
• How can you generalize them?
• Consider data structures for representing the

following problems…

20-May-02 CSE 373 - Data Structures - 20 - Graph Intro 6

CSE Course Prerequisites at UW

321143

142

322

326
341370

378

401

421Nodes = courses
Directed edge = prerequisite

20-May-02 CSE 373 - Data Structures - 20 - Graph Intro 7

Representing a Maze

F

Nodes = rooms
Edge = door or passage

F

B

B

B

20-May-02 CSE 373 - Data Structures - 20 - Graph Intro 8

Representing Electrical Circuits

Nodes = battery, switch, resistor, etc.
Edges = connections

Battery Switch

Resistor

20-May-02 CSE 373 - Data Structures - 20 - Graph Intro 9

Program statements

x1=q+y*z
x2=y*z-q Naive:

common
subexpression

eliminated:

y z

*

-

q

+

q *

x1 x2

y z

-

q

+

q *

x1 x2

Nodes = symbols/operators
Edges = relationships

y*z calculated twice

20-May-02 CSE 373 - Data Structures - 20 - Graph Intro 10

Precedence
S1 a=0;

S2 b=1;

S3 c=a+1

S4 d=b+a;

S5 e=d+1;

S6 e=c+d;

3

1 2

6

5

4Which statements must execute before S6?
S1, S2, S3, S4

Nodes = statements
Edges = precedence requirements

20-May-02 CSE 373 - Data Structures - 20 - Graph Intro 11

Information Transmission in a
Computer Network

Seattle

New York

L.A.

Tokyo

Sydney

Seoul

Nodes = computers
Edges = transmission rates

128

140
181

30
16

56

20-May-02 CSE 373 - Data Structures - 20 - Graph Intro 12

Traffic Flow on Highways

Nodes = cities
Edges = # vehicles on
connecting highway

UW

20-May-02 CSE 373 - Data Structures - 20 - Graph Intro 13

Soap Opera Relationships

Victor

Ashley

Brad

Michelle

Wayne

Trisha
Peter

Six Degrees of Separation from
Kevin Bacon

Kevin
Bacon

Apollo
13

Tom
Hanks

Gary
Sinise

Forest
Gump

Robin
Wright

The
Princess

Bride

Wallace
Shawn

Cary
Elwes

Toy
Story

Laurie
Metcalf

Rosanna
Arquette

Desperately
Seeking Susan

After
Hours Cheech

Marin

Where’s my Oscar?

20-May-02 CSE 373 - Data Structures - 20 - Graph Intro 15

Six Degrees of Separation from
Kevin Bacon

Apollo 13

Apollo 13

Forest G
um

p

The Princess Bride

The Princess Bride Toy Story
Desperately Seeking Susan

After Hours
Kevin
Bacon

Tom
Hanks

Gary
Sinise

Robin
Wright

Wallace
Shawn

Cary
Elwes

Laurie
Metcalf

Rosanna
Arquette

Cheech
Marin

20-May-02 CSE 373 - Data Structures - 20 - Graph Intro 16

Niche overlaps

Raccoon
Hawk

Owl

Opossum
Squirrel

Crow

Shrew

Mouse

Woodpecker

20-May-02 CSE 373 - Data Structures - 20 - Graph Intro 17

Graph Definition

• A graph is simply a collection of nodes plus edges
› Linked lists, trees, and heaps are all special cases of

graphs

• The nodes are known as vertices (node = “vertex”)
• Formal Definition: A graph G is a pair (V, E)

where
› V is a set of vertices or nodes
› E is a set of edges that connect vertices

20-May-02 CSE 373 - Data Structures - 20 - Graph Intro 18

Graph Example
• Here is a graph G = (V, E)

› Each edge is a pair (v1, v2), where v1, v2 are vertices in V

V = {A, B, C, D, E, F}
E = {(A,B), (A,D), (B,C), (C,D), (C,E), (D,E)}

A

B
C

ED
F

20-May-02 CSE 373 - Data Structures - 20 - Graph Intro 19

Directed vs Undirected Graphs

• If the order of edge pairs (v1, v2) matters, the graph is
directed (also called a digraph): (v1, v2) ≠ (v2, v1)

• If the order of edge pairs (v1, v2) does not matter, the graph
is called an undirected graph: in this case, (v1, v2) = (v2, v1)

v1
v2

v1 v2

20-May-02 CSE 373 - Data Structures - 20 - Graph Intro 20

Undirected Terminology

• Two vertices u and v are adjacent in an
undirected graph G if {u,v} is an edge in G
› edge e = {u,v} is incident with vertex u and vertex v

• The degree of a vertex in an undirected graph is
the number of edges incident with it
› a loop counts twice (both ends count)
› denoted with deg(v)

20-May-02 CSE 373 - Data Structures - 20 - Graph Intro 21

Directed Terminology
• Vertex u is adjacent to vertex v in a directed

graph G if (u,v) is an edge in G
› vertex u is the initial vertex of (u,v)

• Vertex v is adjacent from vertex u
› vertex v is the terminal (or end) vertex of (u,v)

• Degree
› in-degree is the number of edges with the vertex as

the terminal vertex
› out-degree is the number of edges with the vertex as

the initial vertex
› a loop adds 1 to in-degree and 1 to out-degree

20-May-02 CSE 373 - Data Structures - 20 - Graph Intro 22

Handshaking Theorem

• Let G=(V,E) be an undirected graph with |E|=e
edges

• Then
• Every edge contributes +1 to the degree of

each of the two vertices it is incident with
› number of edges is exactly half the sum of deg(v)
› the sum of the deg(v) values must be even

∑
∈

=
Vv

ve)deg(2

20-May-02 CSE 373 - Data Structures - 20 - Graph Intro 23

Graph Representations

• Space and time are analyzed in terms of:

• Number of vertices = |V| and

• Number of edges = |E|

• There are two ways of representing graphs:

• The adjacency matrix representation

• The adjacency list representation

20-May-02 CSE 373 - Data Structures - 20 - Graph Intro 24

Adjacency Matrix
A B C D E F

0 1 0 1 0 0

1 0 1 0 0 0

0 1 0 1 1 0

1 0 1 0 1 0

0 0 1 1 0 0

0 0 0 0 0 0M(v, w) =
1 if (v, w) is in E

0 otherwise

A

B

C

D

E

F

Space = |V|2

A

B
C

ED
F

20-May-02 CSE 373 - Data Structures - 20 - Graph Intro 25

Adjacency Matrix for a Digraph
A B C D E F

0 1 0 1 0 0

0 0 1 0 0 0

0 0 0 1 1 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

A

B

C

D

E

F

Space = |V|2

M(v, w) =
1 if (v, w) is in E

0 otherwise

A

B
C

ED
F

20-May-02 CSE 373 - Data Structures - 20 - Graph Intro 26

B D

B D

C

A C E

D

E

A C

Adjacency List

A

B

C

D

E

F

A

B
C

ED
F

Space = a |V| + 2 b |E|

For each v in V, L(v) = list of w such that (v, w) is in E
a b

20-May-02 CSE 373 - Data Structures - 20 - Graph Intro 27

B D

E

D

C

a b

Adjacency List for a Digraph

A

B

C

D

E

F

E

A

B
C

ED
F

For each v in V, L(v) = list of w such that (v, w) is in E

Space = a |V| + b |E|
20-May-02 CSE 373 - Data Structures - 20 - Graph Intro 28

Bipartite

• A simple graph is bipartite if:
› its vertex set V can be partitioned into two

disjoint non-empty sets such that
• every edge in the graph connects a vertex in one set

to a vertex in the other set
• which also means that no edge connects a vertex in

one set to another vertex in the same set

› no triangular connections

Bipartite examples

g

c

a b

f

de{a b d}
{c e f g}

g

c

a b

f

d

e
20-May-02 CSE 373 - Data Structures - 20 - Graph Intro 30

Bipartite example - not

c

a b

f

de

a says that b and f should be in S2,
but b says a and f should be in S1.
TILT!

20-May-02 CSE 373 - Data Structures - 20 - Graph Intro 31

Complete bipartite graph Km,n

• vertex set partitioned into two subsets of sizes m and n
• all vertices in one subset are connected to all vertices

in the other subset

K2,3 K3,3K1,5

