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Readings and References

• Reading
› Section 9.1, Data Structures and Algorithm Analysis in C, Weiss

• Other References
› Section 23.1, Representation of Graphs, Intro to Algorithms,

Cormen, Leiserson, Rivest

Some slides based on: CSE 326 by S. Wolfman, 2000
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What are graphs?

• Yes, this is a graph….

• But we are interested in a different kind of “graph”
20-May-02 CSE 373 - Data Structures - 20 - Graph Intro 4

Motivation for Graphs
• Consider the data structures we

have looked at so far…
• Linked list: nodes with 1 incoming

edge + 1 outgoing edge
• Binary trees/heaps: nodes with 1

incoming edge + 2 outgoing edges
• Binomial trees/B-trees: nodes with

1 incoming edge + multiple
outgoing edges

• Up-trees: nodes with multiple
incoming edges +  1 outgoing edge
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Motivation for Graphs

• What is common among these data structures?
• How can you generalize them?
• Consider data structures for representing the

following problems…
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CSE Course Prerequisites at UW
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341370
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421Nodes = courses
Directed edge = prerequisite
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Representing a Maze

F

Nodes = rooms
Edge = door or passage

F

B

B

B
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Representing Electrical Circuits

Nodes = battery, switch, resistor, etc.
Edges = connections

Battery Switch

Resistor
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Program statements

x1=q+y*z
x2=y*z-q Naive:

common
subexpression

eliminated:

y z

*

-

q

+

q *

x1 x2

y z

-

q

+

q *

x1 x2

Nodes = symbols/operators
Edges = relationships

y*z calculated twice
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Precedence
S1 a=0;

S2 b=1;

S3 c=a+1

S4 d=b+a;

S5 e=d+1;

S6 e=c+d;

3

1 2

6

5

4Which statements must execute before S6?
S1, S2, S3, S4

Nodes = statements
Edges = precedence requirements
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Information Transmission in a
Computer Network
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Nodes = computers
Edges = transmission rates
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Traffic Flow on Highways

Nodes = cities
Edges = # vehicles on 
connecting highway

UW
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Soap Opera Relationships

Victor

Ashley

Brad

Michelle

Wayne

Trisha
Peter

Six Degrees of Separation from
Kevin Bacon

Kevin
Bacon

Apollo
13

Tom
Hanks

Gary
Sinise

Forest
Gump

Robin
Wright

The
Princess

Bride

Wallace
Shawn

Cary
Elwes

Toy
Story

Laurie
Metcalf

Rosanna
Arquette

Desperately
Seeking Susan

After
Hours Cheech

Marin

Where’s my Oscar?
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Niche overlaps

Raccoon
Hawk

Owl

Opossum
Squirrel

Crow

Shrew

Mouse

Woodpecker
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Graph Definition

• A graph is simply a collection of nodes plus edges
› Linked lists, trees, and heaps are all special cases of

graphs

• The nodes are known as vertices (node = “vertex”)
• Formal Definition: A graph G is a pair (V, E)

where
› V is a set of vertices or nodes
› E is a set of edges that connect vertices
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Graph Example
• Here is a graph G = (V, E)

› Each edge is a pair (v1, v2), where v1, v2 are vertices in V

V = {A, B, C, D, E, F}
E = {(A,B), (A,D), (B,C), (C,D), (C,E), (D,E)}

A

B
C

ED
F
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Directed vs Undirected Graphs

• If the order of edge pairs (v1, v2) matters, the graph is
directed (also called a digraph): (v1, v2) ≠ (v2, v1)

• If the order of edge pairs (v1, v2) does not matter, the graph
is called an undirected graph: in this case, (v1, v2) = (v2, v1)

v1
v2

v1 v2
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Undirected Terminology

• Two vertices u and v are adjacent in an
undirected graph G if {u,v} is an edge in G
› edge e = {u,v} is incident with vertex u and vertex v

• The degree of a vertex in an undirected graph is
the number of edges incident with it
› a loop counts twice (both ends count)
› denoted with deg(v)
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Directed Terminology
• Vertex u is adjacent to vertex v in a directed

graph G if (u,v) is an edge in G
› vertex u is the initial vertex of (u,v)

• Vertex v is adjacent from vertex u
› vertex v is the terminal (or end) vertex of (u,v)

• Degree
› in-degree is the number of edges with the vertex as

the terminal vertex
› out-degree is the number of edges with the vertex as

the initial vertex
› a loop adds 1 to in-degree and 1 to out-degree
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Handshaking Theorem

• Let G=(V,E) be an undirected graph with |E|=e
edges

• Then
• Every edge contributes +1 to the degree of

each of the two vertices it is incident with
› number of edges is exactly half the sum of deg(v)
› the sum of the deg(v) values must be even

∑
∈

=
Vv

ve )deg(2
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Graph Representations

• Space and time are analyzed in terms of:

• Number of vertices = |V|   and

• Number of edges = |E|

• There are two ways of representing graphs:

• The  adjacency matrix  representation

• The  adjacency list  representation
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Adjacency Matrix
A     B     C     D     E     F

0      1      0      1      0     0

1      0      1      0      0     0

0      1      0      1      1     0

1      0      1      0      1     0

0      0      1      1      0     0

0      0      0      0      0     0M(v, w)  =  
1 if (v, w) is in E

0 otherwise

A

B

C

D

E

F

Space = |V|2

A

B
C

ED
F



20-May-02 CSE 373 - Data Structures - 20 - Graph Intro 25

Adjacency Matrix for a Digraph
A     B     C     D     E     F

0      1      0      1      0     0

0      0      1      0      0     0

0      0      0      1      1     0

0      0      0      0      1     0

0      0      0      0      0     0

0      0      0      0      0     0

A

B

C

D

E

F

Space = |V|2

M(v, w)  =  
1 if (v, w) is in E

0 otherwise

A

B
C

ED
F
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Adjacency List

A

B

C

D

E

F

A

B
C

ED
F

Space = a |V| + 2 b |E|

For each v in V, L(v) = list of w such that (v, w) is in E
a b
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B D

E

D

C

a b

Adjacency List for a Digraph

A

B

C

D

E

F

E
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B
C
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F

For each v in V, L(v) = list of w such that (v, w) is in E

Space = a |V| + b |E|
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Bipartite

• A simple graph is bipartite if:
› its vertex set V can be partitioned into two

disjoint non-empty sets such that
• every edge in the graph connects a vertex in one set

to a vertex in the other set
• which also means that no edge connects a vertex in

one set to another vertex in the same set

› no triangular connections



Bipartite examples

g

c

a b

f

de{a b d}
{c e f g}

g

c

a b

f

d

e
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Bipartite example - not

c

a b

f

de

a says that b and f should be in S2,
but b says a and f should be in S1.
TILT!
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Complete bipartite graph Km,n

• vertex set partitioned into two subsets of sizes m and n
• all vertices in one subset are connected to all vertices

in the other subset

K2,3 K3,3K1,5


