
Disjoint Sets

CSE 373 - Data Structures
May 20, 2002

20-May-02 CSE 373 - Data Structures - 19 - DisjointSets - Part 2 2

Readings and References

• Reading
› Chapter 8, Data Structures and Algorithm Analysis in C, Weiss

• Other References

20-May-02 CSE 373 - Data Structures - 19 - DisjointSets - Part 2 3

Disjoint Set ADT

• Find: Given an element, return the “name” of
its equivalence class

• note that we are finding the equivalence class,
not the element

• Union: Given the “names” of two equivalence
classes, merge them into one class
› may have a new name or one of the two old names

20-May-02 CSE 373 - Data Structures - 19 - DisjointSets - Part 2 4

Disjoint Set Example

{1,4,8}

{7}

{6}

{5,9,10}
{2,3}

Find(4)

8 Union(3,6){2,3,6}

Equivalence Classes = {1,4,8}, {2,3}, {6}, {7}, {5,9,10}
Name of equivalence class underlined

20-May-02 CSE 373 - Data Structures - 19 - DisjointSets - Part 2 5

Up-Tree Virtual Data Structure

• Each equivalence class (or
discrete set) is an up-tree
with its root as its
representative member

• All members of a given set
are nodes in that set’s up-
tree

• Hash table maps input data
to the node associated with
that data
› input string � integer

a c

g

h

d b

e

Up-trees are usually not binary!

f i

{a,d,g,b,e} {c,f} {h,i}

NULL NULL NULL

20-May-02 CSE 373 - Data Structures - 19 - DisjointSets - Part 2 6

Example of Find

a c g h

d b

e

f i

find(e) = a

Find: Just traverse from the node to the root.

find(f) = c
Runtime = ?

20-May-02 CSE 373 - Data Structures - 19 - DisjointSets - Part 2 7

Example of Union

a c g h

d b

e

f i

union(c,a)

Union: Just hang one root from the other.

Runtime = ?

Now find(f) = c
and find(e) = c

20-May-02 CSE 373 - Data Structures - 19 - DisjointSets - Part 2 8

0 1 0 1 2 3 1 0-
0 1/a 2/b 3/c 4/d 5/e 6/f 7/g 8/h

An Up-Tree Implementation
• Forest of up-trees can easily

be stored in an array “up”
• If node names are pos

integers or characters, can
use a very simple, perfect
hash function: Hash(X) = X

• up[X]= parent of X;
 = 0 if X is a root

Array up:

a c

g

h

d b

e

f

NULL NULL NULL

20-May-02 CSE 373 - Data Structures - 19 - DisjointSets - Part 2 9

Example of Find

a c g

d b

e

f

Find(e) = a

Traverse to the root

Runtime = ?

Array up: 0 1 0 1 2 3 1 0-
0 1/a 2/b 3/c 4/d 5/e 6/f 7/g 8/h

20-May-02 CSE 373 - Data Structures - 19 - DisjointSets - Part 2 10

Example of Union

a c g

d b

e

f

Union(c,a)
Hang one root from another

Runtime = ?

Now:
Find(f) = c
Find(e) = c

Change a (from 0) to point to c (= 3)
Array up: 3 1 0 1 2 3 1 0-

0 1/a 2/b 3/c 4/d 5/e 6/f 7/g 8/h

20-May-02 CSE 373 - Data Structures - 19 - DisjointSets - Part 2 11

Example: Union(b,e)

e

f g ha b c d i

Union(b,e)

e f g ha b c d i

20-May-02 CSE 373 - Data Structures - 19 - DisjointSets - Part 2 12

Union(a,d)

e

f g ha b c d i

f g ha b c i

d e

Example: Union(a,d)

20-May-02 CSE 373 - Data Structures - 19 - DisjointSets - Part 2 13

Union(a,b)

f g ha b c i

d e

f g ha

b

c i

d

e

Example: Union(a,b)

20-May-02 CSE 373 - Data Structures - 19 - DisjointSets - Part 2 14

Union(d,e) – But (you say) d and e are not roots!
May be allowed in some implementations – do Find first to get roots
Since Find(d) = Find(e), union already done!

f g ha

b

c i

d

e

But: while we’re finding e, could we do something to speed
up Find(e) next time? (hold that thought!)

Example: Union(d,e)

20-May-02 CSE 373 - Data Structures - 19 - DisjointSets - Part 2 15

Union(h,i)

f g ha

b

c i

d

e

f g ha

b

c

id

e

Example: Union(h,i)

20-May-02 CSE 373 - Data Structures - 19 - DisjointSets - Part 2 16

Union(c,f)

f g ha

b

c

id

e

f

g ha

b

c

id

e

Example: Union(c,f)

20-May-02 CSE 373 - Data Structures - 19 - DisjointSets - Part 2 17

Union(c,a)

f

g ha

b

c

id

e

f

g h

a

b

c

i

d

e

Example: Union(c,a)

20-May-02 CSE 373 - Data Structures - 19 - DisjointSets - Part 2 18

An Implementation of Find
int Find(int X, DisjSet up) {

// Assumes X = Hash(X_Element)

// X_Element could be str/char etc.

if (up[X] <= 0) // Parent is flag value

return X; // so X is a root

else // else find root recursively

return Find(up[X],up);

}

Runtime of Find: O(max height)
Height of tree depends on the previous Unions that built the particular tree
�Best case: U(1,2), U(1,3), U(1,4) ,… O(1)
�Worst case: U(2,1), U(3,2), U(4,3),… O(N)

20-May-02 CSE 373 - Data Structures - 19 - DisjointSets - Part 2 19

An Implementation of Union
void Union(DisjSet up, int X, int Y) {

//Make sure X, Y are roots

assert(up[X] == 0);

assert(up[Y] == 0);

up[Y] = X;

}

Runtime of Union: O(1)

Union(c,a)

f

g ha

b

c

id

e

f

g h

a

b

c

i

d

e

Issue with Union(c,a)

Could we do a better job
on this Union? What
happened to the depth of
node e?

20-May-02 CSE 373 - Data Structures - 19 - DisjointSets - Part 2 21

Speeding Up : Union-by-Size
• Can we speed things up by being clever about

growing our up-trees?
› Always make root of larger tree the new root
› Why? Minimizes height of the new up-tree

f

g ha

b

c

id

e

f

g h

a

b

c

i

d

e Union-by-Size

f

g ha

b c id

e

Union(c,a)

20-May-02 CSE 373 - Data Structures - 19 - DisjointSets - Part 2 22

Storing Size Information

• Instead of storing 0
in root, store up-tree
size as negative
value in root node

Array up:

a c

g

h

d b

e

f

NULL NULL NULL

-5 1 -2 1 2 3 1 -1-
0 1/a 2/b 3/c 4/d 5/e 6/f 7/g 8/h

20-May-02 CSE 373 - Data Structures - 19 - DisjointSets - Part 2 23

Union-by-Size Code
void Union(DisjSet up, int X, int Y) {

//X, Y are roots containing (-size) of up-trees
assert(up[X] < 0);
assert(up[Y] < 0);

if (-up[X] > -up[Y]) {// X is bigger than Y
up[X] += up[Y]; // so X is new root
up[Y] = X; // and Y points to X

}
else { // size of X ≤≤≤≤ size of Y

up[Y] += up[X]; // so Y is new root
up[X] = Y; // and X points to Y

}
}

20-May-02 CSE 373 - Data Structures - 19 - DisjointSets - Part 2 24

Union-by-Size: Analysis
• Finds are O(max up-tree height) for a forest of up-

trees containing N nodes
• Number of nodes in an up-tree of height h using

union-by-size is ≥ 2h

• Pick up-tree with
max height

• Then, 2max height ≤ N
• max height ≤ log N
• Find takes O(log N)

Base case: h = 0, tree has 20 = 1 node
Induction hypothesis: Assume true for h < h′

Induction Step: New tree of height h′ was
formed via union of two trees of height h′-1
Each tree then has ≥ 2h′-1 nodes by the
induction hypothesis
So, total nodes ≥ 2h′-1 + 2h′-1 = 2h′

� True for all h

20-May-02 CSE 373 - Data Structures - 19 - DisjointSets - Part 2 25

Union-by-Height

• Textbook describes alternative strategy of
Union-by-height
› Keep track of height of each up-tree in the root

nodes
› Union makes root of up-tree with greater height

the new root
• Same results and similar implementation as

Union-by-Size
› Find is O(log N) and Union is O(1)

20-May-02 CSE 373 - Data Structures - 19 - DisjointSets - Part 2 26

Find and Path Compression

• M Finds on same element take O(M log N) time
› Can we modify Find to have side-effects so that

next Find will be faster?
• Path Compression

› When we do a Find, we follow a path in the tree
from the given element X all the way up to the root

› The tree does not have to be a binary tree
› So we can reroot the nodes on the path so that they

are all direct children of the root of their tree

20-May-02 CSE 373 - Data Structures - 19 - DisjointSets - Part 2 27

Example: Path Compression

f ga
b

c
d

e

f ga
b

c
d

e

Path compression! The next Find(e) will run faster.

Remember splay trees? Similar idea … self adjust to
improve future performance based on actual usage.

Find(e)

20-May-02 CSE 373 - Data Structures - 19 - DisjointSets - Part 2 28

Another Path Compression Example

f ha

b

c

d

e

g Find(e)

i

f ha

c

d

e

g

b

i

20-May-02 CSE 373 - Data Structures - 19 - DisjointSets - Part 2 29

Make all nodes along
access path point to root

Path Compression Code

int Find(int X, DisjSet up) {

// Assumes X = Hash(X_Element)

// X_Element could be str/char etc.

if (up[X] <= 0) // Parent is flag value

return X; // so X is root

else // else find root recursively

return up[X] = Find(up[X],up);

}

20-May-02 CSE 373 - Data Structures - 19 - DisjointSets - Part 2 30

New running time of Find?

int Find(int X, DisjSet up) {

// Assumes X = Hash(X_Element)
// X_Element could be str/char etc.

if (up[X] <= 0) // Parent is flag value

return X; // so X is root

else // else find root recursively

return up[X] = Find(up[X],up);

}

• Find still takes O(max up-tree height) worst case
• But what happens to the tree heights over time?

› we are collapsing the tree by having each node point to its root

• What is the amortized run time of Find if we do M Finds?

20-May-02 CSE 373 - Data Structures - 19 - DisjointSets - Part 2 31

Find Run Time Analysis

• What is the amortized run time of Find if we do
M Finds?
› (one or more) operations that take O(max height)
› M-(one or more) operations that take O(1) constant

time
› amortized total cost is O(1) constant time

20-May-02 CSE 373 - Data Structures - 19 - DisjointSets - Part 2 32

Slow-growing functions
• How fast does log N grow? log N = 4 for N = 16 = 24

› Grows quite slowly
• Let log(k) N = log (log (log … (log N))) (k logs)
• Let log* N = minimum k such that log(k) N ≤ 1
• How fast does log*N grow? log*N = 4 for N = 65536 = 22

› Grows very slowly
• Ackermann created a really explosive function A(i, j) and its

inverse α(M, N)
• How fast does α(M, N) grow? α(M, N) = 4 for M (≥ N) far

larger than the number of atoms in the universe (2300)!!
› grows very, very slowly (slower than log* N)

22

20-May-02 CSE 373 - Data Structures - 19 - DisjointSets - Part 2 33

• When both path compression and Union-by-
Size are used, the worst case run time for a
sequence of M operations (Unions or Finds)
› Textbook proves O(M log*N) time
› R. E. Tarjan showed Θ(M α(M,N))

• α(M, N) ≤ 4 for all practical choices of M and N
• Amortized run time per operation

› = total time/(# operations)
› = Θ(M α(M,N))/M = Θ(α(M,N))
› for all practical purposes: O(1) constant time

Find and Union Run Time Analysis

20-May-02 CSE 373 - Data Structures - 19 - DisjointSets - Part 2 34

Disjoint Set and Union/Find

• Disjoint Set data structure arises in many
applications where objects of interest fall into
different equivalence classes or sets
› Cities on a map, electrical components on

chip, computers in a network, people related
to each other by blood, etc.

• Two main operations: Union of two classes
and Find class name for a given element

20-May-02 CSE 373 - Data Structures - 19 - DisjointSets - Part 2 35

Disjoint Set and Union/Find
• Up-Tree data structure allows efficient array

implementation
› Unions take O(1) worst case time, Finds can take O(N)
› Union-by-Size reduces worst case time for Find to

O(log N)
› Union-by-Size plus Path Compression allows further

speedup
• Any sequence of M Union/Find operations results in O(1)

amortized time per operation (for all practical purposes)

