Disjoint Sets

CSE 373 - Data Structures May 20, 2002

Readings and References

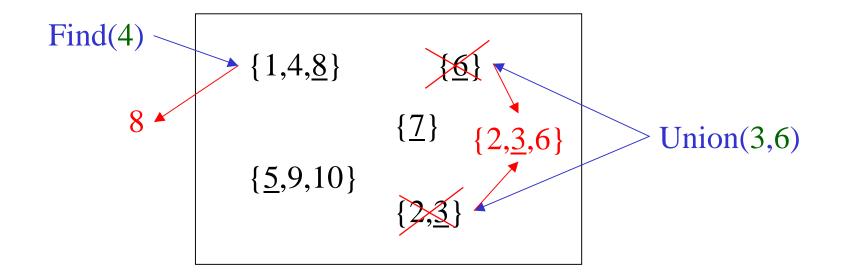
- Reading
 - > Chapter 8, Data Structures and Algorithm Analysis in C, Weiss
- Other References

Disjoint Set ADT

- <u>Find</u>: Given an element, return the "name" of its equivalence class
 - note that we are finding the equivalence class, not the element
- <u>Union</u>: Given the "names" of two equivalence classes, merge them into one class
 - > may have a new name or one of the two old names

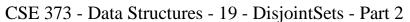
Disjoint Set Example

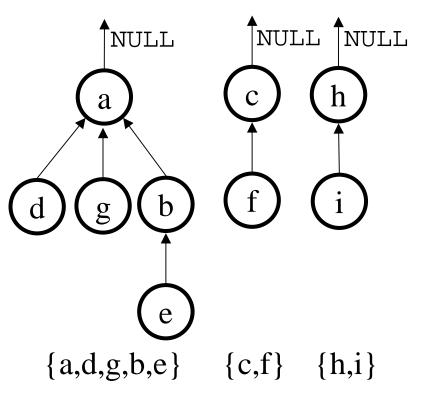
Equivalence Classes = $\{1,4,8\}$, $\{2,3\}$, $\{6\}$, $\{7\}$, $\{5,9,10\}$ Name of equivalence class underlined



Up-Tree Virtual Data Structure

- Each equivalence class (or discrete set) is an up-tree with its root as its representative member
- All members of a given set are nodes in that set's uptree
- Hash table maps input data to the node associated with that data
 - > input string \rightarrow integer

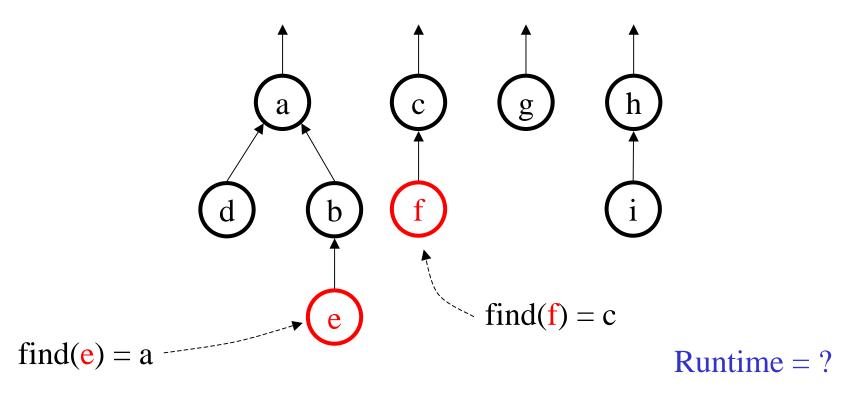




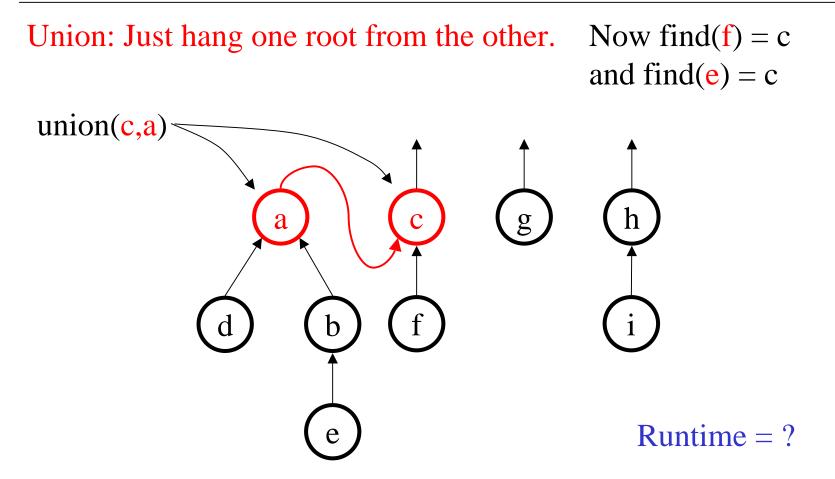
Up-trees are usually **not** binary!

Example of Find

Find: Just traverse from the node to the root.



Example of Union



An Up-Tree Implementation

- Forest of up-trees can easily be stored in an array "up"
- If node names are pos integers or characters, can use a very simple, perfect hash function: Hash(X) = X
- up[X] = parent of X;
 = 0 if X is a root

d g b f

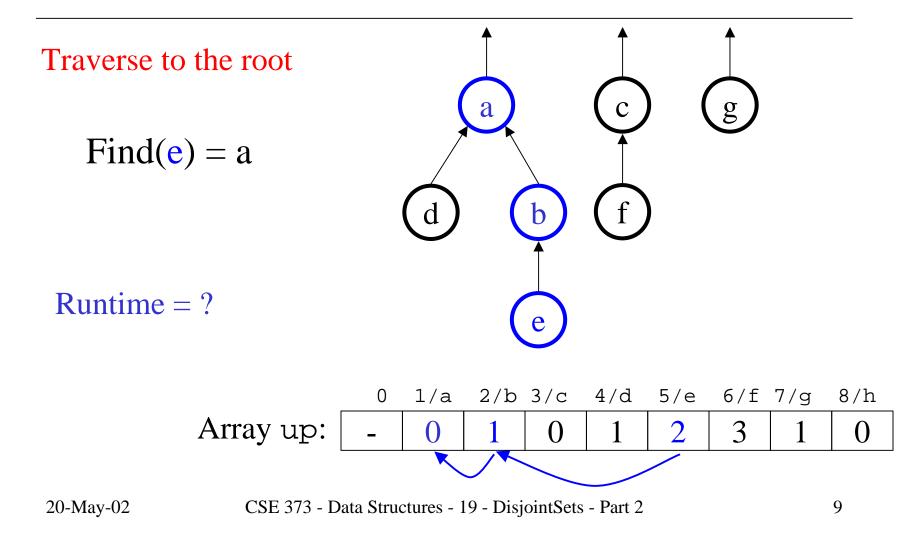
NULL

a

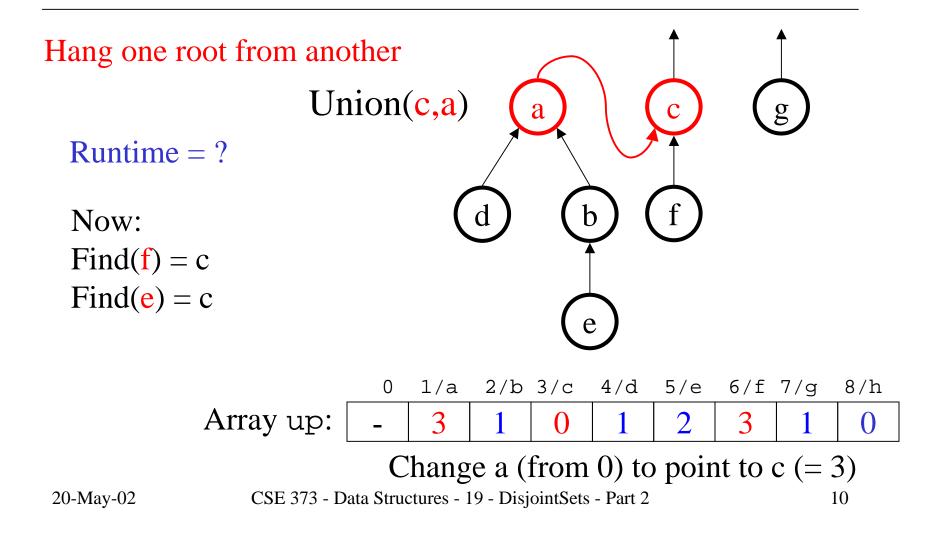
CSE 373 - Data Structures - 19 - DisjointSets - Part 2

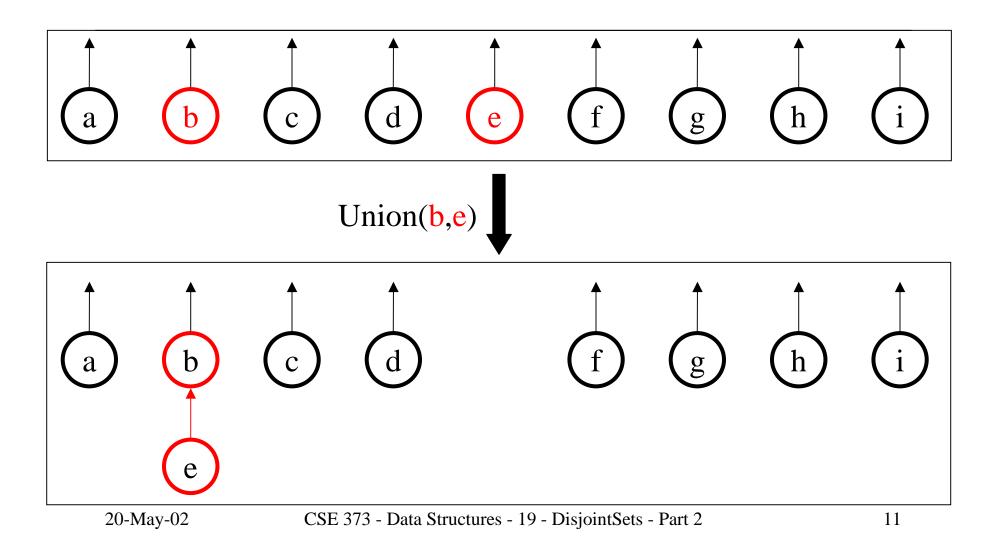
NULL NULL

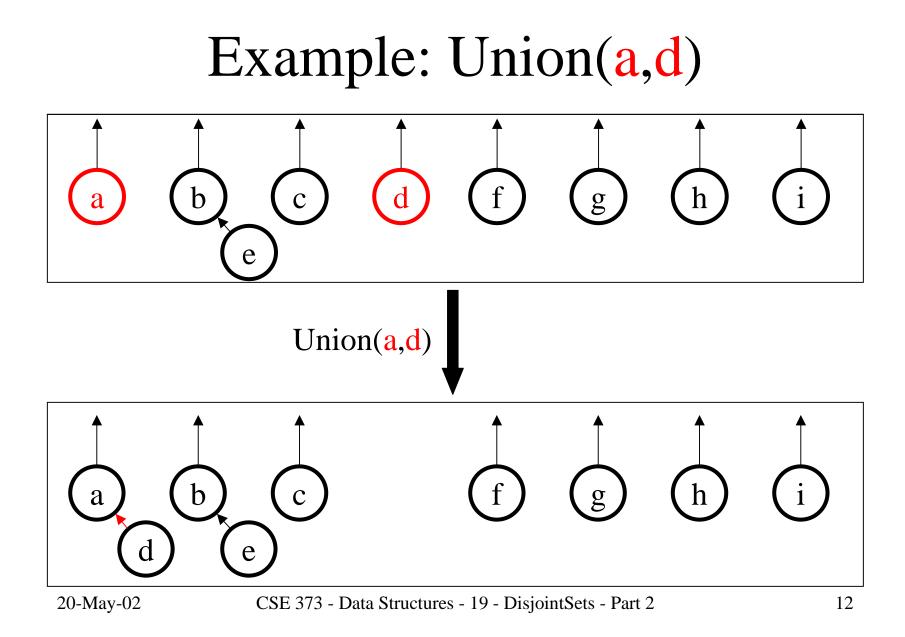
Example of Find



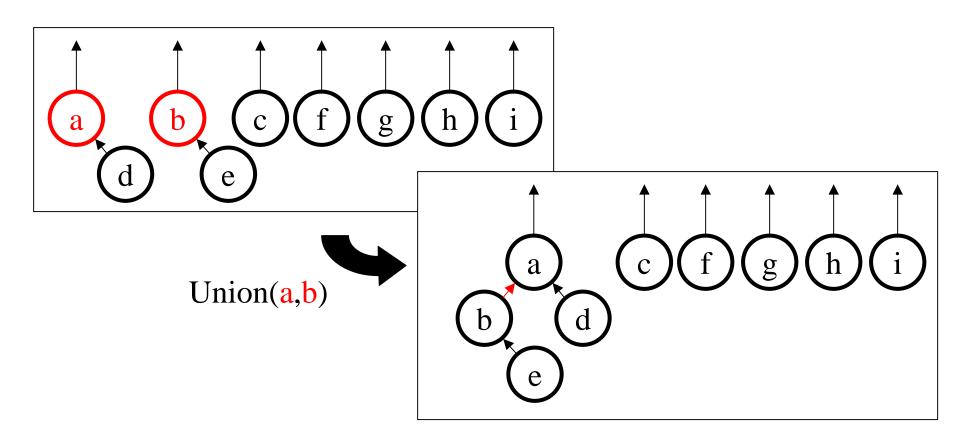
Example of Union





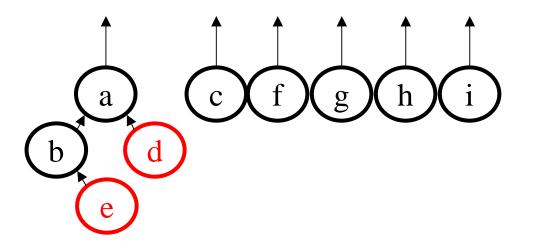


Example: Union(a,b)



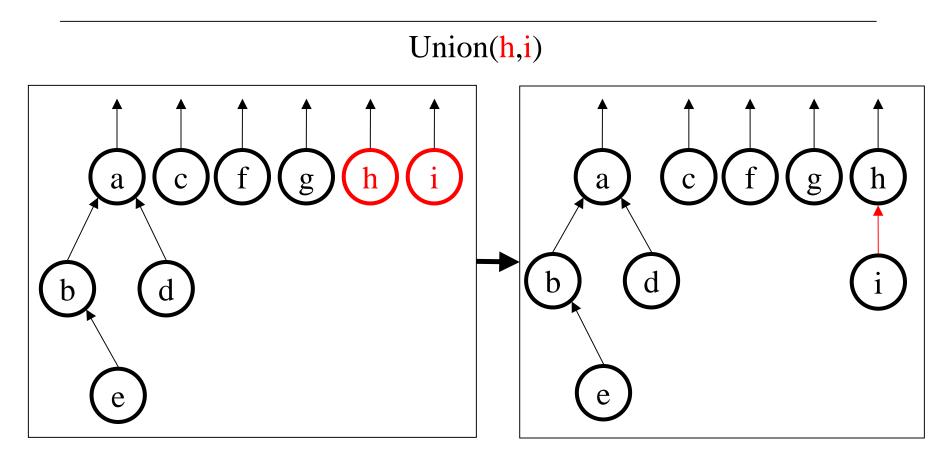
Example: Union(d,e)

Union(d,e) – But (you say) d and e are not roots! May be allowed in some implementations – do Find first to get roots Since Find(d) = Find(e), union already done!



But: while we're finding e, could we do something to speed up Find(e) next time? (hold that thought!) O-May-02 CSE 373 - Data Structures - 19 - DisjointSets - Part 2 20-May-02

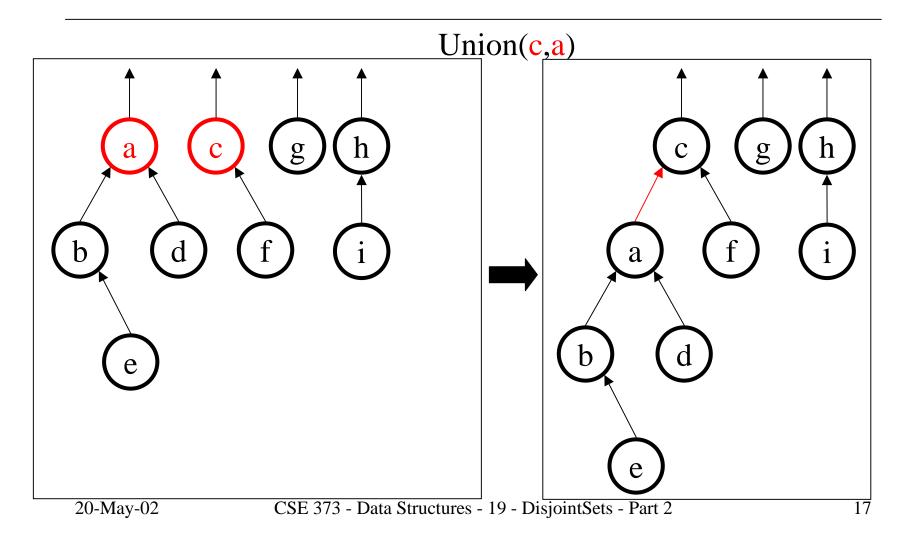
Example: Union(h,i)



Example: Union(c,f)

Union(c,f) Union(c,f) (a) (c) (f) (g) (h) (b) (d) (f) (g) (h) (b) (d) (f) (i)(e)

Example: Union(c,a)



An Implementation of Find

```
int Find(int X, DisjSet up) {
  // Assumes X = Hash(X_Element)
  // X_Element could be str/char etc.
  if (up[X] <= 0) // Parent is flag value
     return X; // so X is a root
  else // else find root recursively
     return Find(up[X],up);
}</pre>
```

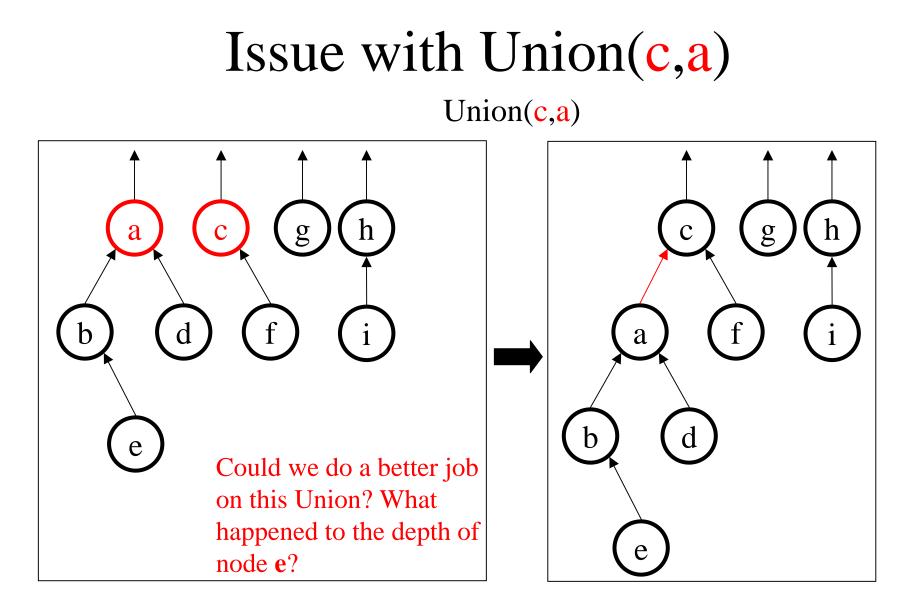
Runtime of Find: O(max height)

Height of tree depends on the previous Unions that built the particular tree \rightarrow Best case: U(1,2), U(1,3), U(1,4),... O(1) \rightarrow Worst case: U(2,1), U(3,2), U(4,3),... O(N)

An Implementation of Union

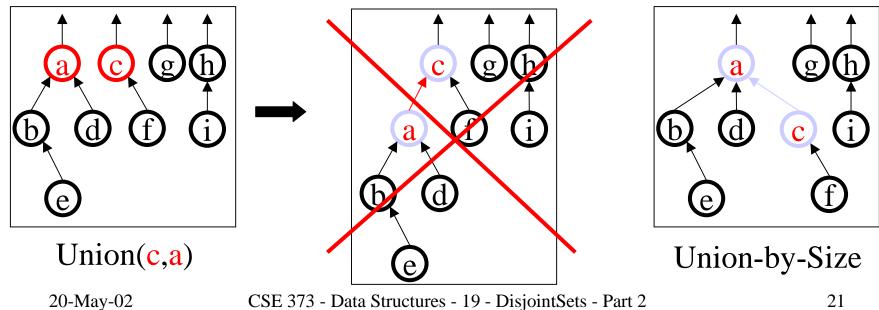
```
void Union(DisjSet up, int X, int Y) {
   //Make sure X, Y are roots
   assert(up[X] == 0);
   assert(up[Y] == 0);
   up[Y] = X;
}
```

Runtime of Union: O(1)

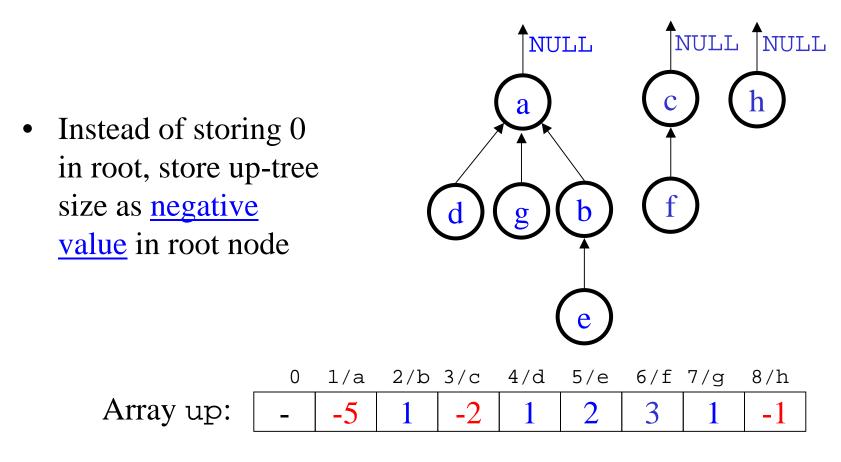


Speeding Up : Union-by-Size

- Can we speed things up by being clever about growing our up-trees?
 - > Always make root of *larger* tree the new root
 - > <u>Why?</u> Minimizes height of the new up-tree



Storing Size Information



Union-by-Size Code

```
void Union(DisjSet up, int X, int Y) {
  //X, Y are roots containing (-size) of up-trees
  assert(up[X] < 0);
  assert(up[Y] < 0);
  if (-up[X] > -up[Y]) {// X is bigger than Y
      up[X] += up[Y]; // so X is new root
      up[Y] = X; // and Y points to X
  }
  else {
                        // size of X \leq size of Y
      up[Y] += up[X]; // so Y is new root
      up[X] = Y;
                        // and X points to Y
20-May-02
            CSE 373 - Data Structures - 19 - DisjointSets - Part 2
                                                   23
```

Union-by-Size: Analysis

- Finds are O(max up-tree height) for a forest of uptrees containing N nodes
- Number of nodes in an up-tree of height *h* using union-by-size is $\geq 2^h$
- Pick up-tree with max height
- Then, $2^{\max \text{ height}} \leq N$
- max height $\leq \log N$
- Find takes O(log N)

 \blacktriangleright

Induction hypothesis: Assume true for h < h'Induction Step: New tree of height h' was formed via union of two trees of height h'-1 Each tree then has $\geq 2^{h'-1}$ nodes by the

<u>Base case</u>: h = 0, tree has $2^0 = 1$ node

induction hypothesis So, total nodes $\geq 2^{h'-1} + 2^{h'-1} = 2^{h'}$

 \rightarrow True for all *h*

20-May-02

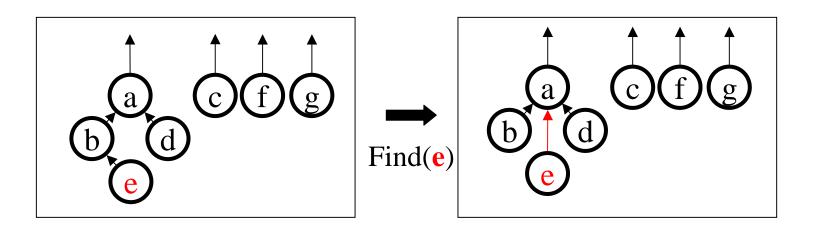
Union-by-Height

- Textbook describes alternative strategy of Union-by-height
 - Keep track of height of each up-tree in the root nodes
 - > Union makes root of up-tree with greater height the new root
- Same results and similar implementation as Union-by-Size
 - > Find is O(log N) and Union is O(1)

Find and Path Compression

- M Finds on same element take O(M log N) time
 - > Can we modify Find to have side-effects so that next Find will be faster?
- Path Compression
 - > When we do a Find, we follow a path in the tree from the given element X all the way up to the root
 - > The tree does not have to be a binary tree
 - > So we can reroot the nodes on the path so that they are all direct children of the root of their tree

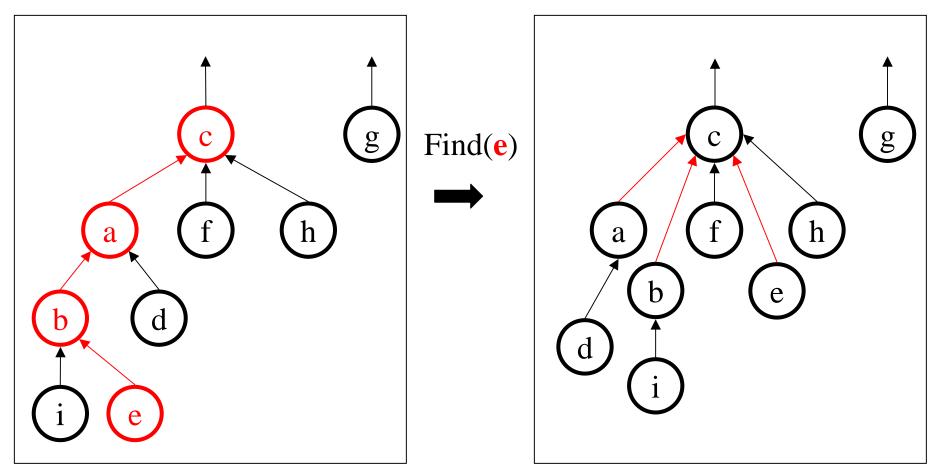
Example: Path Compression



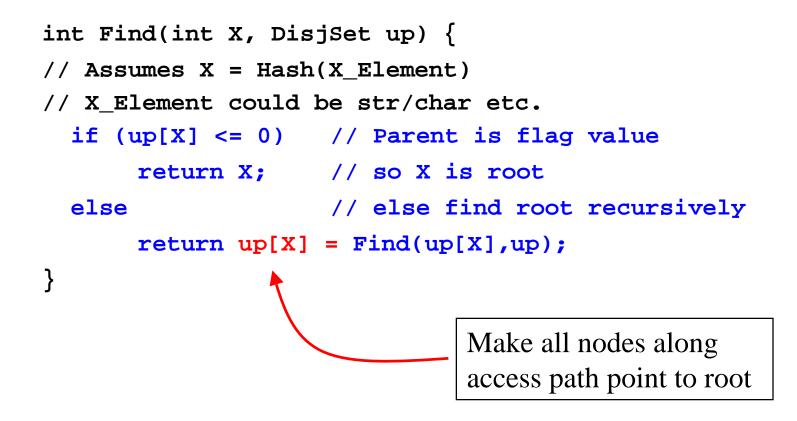
Path compression! The next Find(e) will run faster.

Remember splay trees? Similar idea ... self adjust to improve future performance based on actual usage.

Another Path Compression Example



Path Compression Code



New running time of Find?

- Find still takes O(max up-tree height) worst case
- But what happens to the tree heights over time?
 - > we are collapsing the tree by having each node point to its root
- What is the *amortized* run time of Find if we do M Finds?

```
int Find(int X, DisjSet up) {
// Assumes X = Hash(X_Element)
// X_Element could be str/char etc.
    if (up[X] <= 0) // Parent is flag value
        return X; // so X is root
    else // else find root recursively
        return up[X] = Find(up[X],up);
}</pre>
```

Find Run Time Analysis

- What is the *amortized* run time of Find if we do M Finds?
 - > (one or more) operations that take O(max height)
 - M-(one or more) operations that take O(1) constant time
 - > amortized total cost is O(1) constant time

Slow-growing functions

- How fast does log N grow? $\log N = 4$ for $N = 16 = 2^4$
 - > Grows *quite* slowly
- Let $\log^{(k)} N = \log (\log (\log ... (\log N)))$ (*k* logs)
- Let $\log^* N = \min k$ such that $\log^{(k)} N \le 1$
- How fast does $\log^* N$ grow? $\log^* N = 4$ for $N = 65536 = 2^{2^2}$
 - > Grows *very* slowly
- Ackermann created a <u>really</u> explosive function A(i, j) and its inverse $\alpha(M, N)$
- How fast does $\alpha(M, N)$ grow? $\alpha(M, N) = 4$ for $M (\geq N)$ far larger than the number of atoms in the universe $(2^{300})!!$
 - > grows very, very slowly (slower than $\log^* N$)

20-May-02

Find and Union Run Time Analysis

- When both path compression and Union-by-Size are used, the worst case run time for a sequence of M operations (Unions or Finds)
 - > Textbook proves O(M log*N) time
 - > R. E. Tarjan showed $\Theta(M \alpha(M,N))$
 - $\alpha(M, N) \le 4$ for all practical choices of M and N
- Amortized run time per operation
 - > = total time/(# operations)
 - $\rightarrow = \Theta(M \alpha(M,N))/M = \Theta(\alpha(M,N))$
 - > for all practical purposes: O(1) constant time

Disjoint Set and Union/Find

- Disjoint Set data structure arises in many applications where objects of interest fall into different equivalence classes or sets
 - Cities on a map, electrical components on chip, computers in a network, people related to each other by blood, etc.
- Two main operations: Union of two classes and Find class name for a given element

Disjoint Set and Union/Find

- Up-Tree data structure allows efficient array implementation
 - > Unions take O(1) worst case time, Finds can take O(N)
 - > Union-by-Size reduces worst case time for Find to O(log N)
 - > Union-by-Size plus Path Compression allows further speedup
 - Any sequence of M Union/Find operations results in O(1) amortized time per operation (for all practical purposes)