Disjoint Sets CSE 373 - Data Structures May 17, 2002	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><page-footer></page-footer></text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>
<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header>	 Relations on a set Consider cities connected by two-way roads Seattle is connected to itself Seattle is connected to Everett means Everett is connected to Seattle If Seattle is connected to Everett and Everett is connected to Bellingham, then Seattle is connected to Bellingham. Consider electrical connections between components on a computer chip

Equivalence Relations

- An equivalence relation R obeys three properties:
 - > <u>reflexive:</u> for any x, xRx is true
 - > <u>symmetric</u>: for any x and y, xRy implies yRx
 - <u>transitive</u>: for any x, y, and z, xRy and yRz implies xRz
- Preceding relations are all examples of *equivalence relations*
- 17-May-02

CSE 373 - Data Structures - 18 - DisjointSets

Equivalence Classes & Disjoint Sets

- A specific equivalence relation operator R divides all the elements into <u>disjoint sets</u> of related items
- Let "~" be an equivalence relation
- If a~b, then a and b are in the same equivalence class

Equivalence Relations

- What are some relations that are not equivalence relations?
 - > What about "<" on integers?
 - not reflexive, not symmetric
 - → What about "≤" on integers?
 - not symmetric
 - > What about "is having an affair with" in a soap opera?
 - Victor IHAAW Ashley IHAAW Brad does not imply Victor IHAAW Brad ∴ not transitive
 - probably not reflexive, although in the soaps, who knows ... 17-May-02 CSE 373 - Data Structures - 18 - DisjointSets 6

- **Equivalence Class Examples**
- If ~ denotes "electrically connected," then sets of connected components on a computer chip form equivalence classes
- On a map, cites that have two-way roads between them form equivalence classes
 - > as long as you say that reflexive means that just sitting in town satisfies Seattle ~ Seattle
 - path length = 0
 - > We don't have loop roads that go out and come back

7

5

Modulo example

- The relation "Modulo N" divides all integers in N equivalence classes.
 - For example, "a mod 5" on the integers produces
 5 equivalence classes (remainders 0 through 4 when the integers are divided by 5)
 - <u>0</u> ~ 5 ~ 10 ~ ...
 - <u>1</u> ~ 6 ~ 11 ~ ...
 - <u>2</u> ~ 7 ~ 12 ~ ...
 - <u>3</u> ~ 8 ~ 13 ~ ...

17-May-02

CSE 373 - Data Structures - 18 - DisjointSets

Problem Definition

- Given a new element, want to add it to an equivalence class (union)
 - > Add 18 to the "a mod 5" relation already containing the numbers shown
 - Since 18 ~ 3 ~ 8 ~ 13, perform a union of 18 with equivalence class of 3, 8, and 13
 - > Add Monroe to the city connection relation
 - Everett is connected to Monroe, so add Monroe to the same equivalence class as Everett, Seattle, and Bellingham

Problem Definition

- Given a set of elements and some equivalence relation ~ between them, we want to figure out the equivalence classes
- Given an element, we want to find the equivalence class it belongs to
 - > E.g. Under mod 5, 13 belongs to the equivalence class of 3
 - E.g. For the map example, want to find the equivalence class of Everett (all the cities it is connected to)
- 17-May-02 CSE 373 Data Structures 18 DisjointSets

10

Disjoint Set ADT

- <u>Find</u>: Given an element, return the "name" of its equivalence class
 - note that we are finding the equivalence class, not the element
- <u>Union</u>: Given the "names" of two equivalence classes, merge them into one class
 - > may have a new name or one of the two old names

11

9

Disjoint Set ADT

- The disjoint set ADT divides elements into equivalence classes and manages the combination of classes depending on the relation of interest
 - > Names of classes are arbitrary e.g. 1 through N, so long as Find returns the same name for 2 elements in the same equivalence class

CSE 373 - Data Structures - 18 - DisjointSets

Disjoint Set ADT Properties

- Disjoint set equivalence property
 - > every element belongs to exactly one set (its equivalence class)
- *Dynamic* equivalence property
 - > the name of the equivalence class that an element is in may change after a union
 - > however, all elements in the class will always have the same equivalence class name

CSE 373 - Data Structures - 18 - DisjointSets

14

More Formal Definition

- Given a set $U = \{a_1, a_2, ..., a_n\}$
- Maintain a *partition* of U, a set of subsets (or equivalence classes) of U denoted by $\{S_1, S_2, \dots, S_n\}$ S_k such that:
 - → each pair of subsets S_i and S_i are disjoint: $S_i \cap S_i = \emptyset$
 - \rightarrow together, the subsets cover U:
 - > each subset has a unique name
- Union(a, b) creates a new subset which is the union of a's subset and b's subset
- Find(a) returns a unique name for a's subset

17-May-02

17-May-02

15

 $U = \bigcup_{i=1}^{n} S_i$

13

Simple array implementation?

- How about an array implementation?
 - > Array A \rightarrow A[i] holds the class name for element i
 - > E.g. if $18 \sim 3$, pick 3 as class name and set A[18] = A[3] = 3
 - > Running time for Find(i)?
 - just return A[i] : O(1)
 - > Running time for Union(i,j)?
 - If first N/2 elements have class name 1 and next N/2 have class name 2, Union(1,2) will need to change class names of N/2 items : O(N) CSE 373 - Data Structures - 18 - DisjointSets 16

Linked List Implementation?

- How about linked lists?
 - > One linked list for each equivalence class
 - > Running time for Find(i)?
 - must scan all lists in worst case : O(N)
 - > Running time for Union(i,j)?
 - just append one list to the other : O(1)
- Tradeoff between Union-Find cannot do both in O(1) time
 - M Finds and N-1 Unions (the max)
 array O(M + N²) or lists O(MN+N) CSE 373 - Data Structures - 18 - DisjointSets

17-May-02

17

Let's use a new Data Structure

- <u>Intuition:</u> Finding the representative member (= class name) of a set is like the *opposite* of finding a key in a given set
- So, instead of trees with pointers from each node to its children, let's use <u>trees with a</u> <u>pointer from each node to its parent</u>
- Such trees are known as <u>Up-Trees</u>

17-May-02

CSE 373 - Data Structures - 18 - DisjointSets

18

Up-Tree Data Structure

NULL

b

g

 $\{a,d,g,b,e\}$

- Each equivalence class (or discrete set) is an up-tree with its root as its representative member
- All members of a given set are nodes in that set's uptree
- Hash table maps input data to the node associated with that data

 \rightarrow input string \rightarrow integer

17-May-02

 $\{h,i\}$

19

NULL NULL

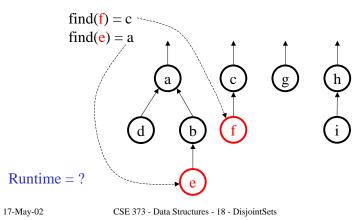
f

 $\{c,f\}$

Up-trees are usually **not** binary!

Example of Find

Find: Just traverse from the node to the root.



Example of Union

