Sorting Summary

CSE 373 - Data Structures May 15, 2002

Readings and References

- Reading
 - Sections 7.8-7.11, Data Structures and Algorithm Analysis in C, Weiss
- Other References

How fast can we sort?

- Heapsort, Mergesort, and Quicksort all run in O(N log N) best case running time
- Can we do any better?
- Can we believe LaMoC, Inc, which claims to have discovered an O(N log(log N)) general purpose sorting algorithm?
 - > The US patent office probably believes it, do you?

No! (if using comparisons only)

- Recall our basic assumption: we can <u>only</u> <u>compare two elements at a time</u>
 - we can only reduce the possible solution space
 by half each time we make a comparison
- Suppose you are given N elements
 - > Assume no duplicates
- How many possible orderings can you get?
 - > Example: a, b, c (N = 3)

Permutations

- How many possible orderings can you get?
 - > Example: a, b, c (N = 3)
 - > (a b c), (a c b), (b a c), (b c a), (c a b), (c b a)
 - > 6 orderings = $3 \cdot 2 \cdot 1 = 3!$ (ie, "3 factorial")
 - > All the possible permutations of a set of 3 elements
- For N elements
 - N choices for the first position, (N-1) choices for the second position, ..., (2) choices, 1 choice
 - > $N(N-1)(N-2)\cdots(2)(1) = N!$ possible orderings

Decision Tree

Decision Trees

- A Decision Tree is a Binary Tree such that:
 - > Each node = a set of orderings
 - ie, the remaining solution space
 - > Each edge = 1 comparison
 - > Each leaf = 1 unique ordering
 - > How many leaves for N distinct elements?
 - N!, ie, a leaf for each possible ordering
- Only 1 leaf has the ordering that is the desired correctly sorted arrangement

15-May-02

Decision Trees and Sorting

- Every sorting algorithm corresponds to a decision tree
 - > Finds correct leaf by choosing edges to follow
 - ie, by making comparisons
 - Each decision reduces the possible solution space by one half

• Run time is \geq maximum no. of comparisons

- maximum number of comparisons is the length of the longest path in the decision tree
 - the length of the longest path is the depth of the tree

Decision Tree Depth Example

15-May-02

How many leaves on a tree?

• Suppose you have a binary tree of <u>depth d</u>. How many leaves can the tree have?

>
$$d = 1 \rightarrow at most 2 leaves,$$

> $d = 2 \rightarrow$ at most 4 leaves, etc.

How deep is it, Jim?

- A binary tree of depth d has at most 2^d leaves
 - > depth d = 1 \rightarrow 2 leaves, d = 2 \rightarrow 4 leaves, etc.
 - > Can prove by induction
- The decision tree has L = N! leaves
- Depth d must be deep enough such that 2^d ≥ L
 > and 2^d ≥ L → d ≥ log L
- So the decision tree depth is $d \ge \log(N!)$

$$\log(N!)$$
 is $\Omega(N\log N)$

$$\log(N!) = \log(N \cdot (N-1) \cdot (N-2) \cdots (2) \cdot (1))$$

$$= \log N + \log(N-1) + \log(N-2) + \cdots + \log 2 + \log 1$$

$$\geq \log N + \log(N-1) + \log(N-2) + \cdots + \log \frac{N}{2}$$

$$\stackrel{\text{each of the selected}}{\text{terms is } \log N/2} \geq \frac{N}{2} \log \frac{N}{2}$$

$$\geq \frac{N}{2} (\log N - \log 2) = \frac{N}{2} \log N - \frac{N}{2}$$

$$= \Omega(N \log N)$$

$\Omega(N \log N)$

- Run time of any comparison-based sorting algorithm is $\Omega(N \log N)$
 - > Any sorting algorithm based on comparisons between elements requires $\Omega(N \log N)$ comparisons
- Can never find an O(N log log N) general purpose sorting algorithm
 - > sorry, LaMoC, Inc!
 - > get a clue, patent office

What about bucket sort?

• You may be saying to yourself

"But on slide 27 of the List lecture on April 5th, he showed that the bucket sort only takes O(N+B) operations, what's up with that?"

 And I say to you: Advance knowledge of the data lets you do all sorts of magic
 > perfect hash

> bucket sort, radix sort

Bucket Sort: Sorting integers

- Bucket sort: N *integers in the range 0 to B-1*
 - Array Count has B elements ("buckets"), initialized to 0
 - > Given input integer i, Count[i]++
 - After reading all N numbers go through the B buckets and read out the resulting sorted list
 - N operations to read and record the numbers plus
 B operations to recover the sorted numbers

Bucket Sort Run Time?

- What is the running time for sorting N integers?
 - > Running Time: O(B+N)
 - B to zero/scan the array and N to read the input
 - > If B is $\Theta(N)$, running time for Bucket sort = O(N)
- Doesn't this violate the O(N log N) lower bound result??
- No When we do Count[i]++, we are comparing one element with <u>all B elements</u>, not just two elements

15-May-02

Radix Sort: Sorting integers

- Radix sort = multi-pass bucket sort of integers in the range 0 to B^P-1
 - Bucket-sort from least significant to most significant "digit" (base B)
 - > Use linked list to store numbers that are in same bucket
 - Requires P*(B+N) operations where P is the number of passes (the number of base B digits in the largest possible input number)
 - > Do P passes instead of using B^P space

Radix Sort Example

data		0	1	2	3	4	5	6	7	8	9
data	Bucket sort		72 <u>1</u>		$\frac{3}{123}$				537	47 <u>8</u>	<u>9</u>
478 537	by 1's digit				12 <u>3</u>				6 <u>7</u>	3 <u>8</u>	
9											
721 3		0	1	2	3	4	5	6	7	8	9
38 123 67	Bucket sort by 10's digit	$\begin{array}{c} \underline{03}\\ \underline{09} \end{array}$		7 <u>2</u> 1 1 <u>2</u> 3	5 <u>3</u> 7 <u>3</u> 8			<u>6</u> 7	4 <u>7</u> 8		
This example uses											
B=10 and base 10 digits for simplicity of		0	1	2	3	4	5	6	7	8	9
demonstration. Larger bucket counts should be used in an actual implementation.	Bucket sort by 100's digit	$ \begin{array}{r} \underline{0}03\\ \underline{0}09\\ \underline{0}38\\ \underline{0}67 \end{array} $	<u>1</u> 23			<u>4</u> 78	<u>5</u> 37		<u>7</u> 21		

15-May-02

Internal versus External Sorting

- So far assumed that accessing A[i] is fast Array A is stored in internal memory (RAM)
 - > Algorithms so far are good for <u>internal sorting</u>
- What if A is so large that it doesn't fit in internal memory?
 - > Data on disk or tape
 - Delay in accessing A[i] e.g. need to spin disk and move head

Internal versus External Sorting

- Need sorting algorithms that minimize disk/tape access time
 - > <u>External sorting</u> Basic Idea:
 - Load chunk of data into RAM, sort, store this "run" on disk/tape
 - Use the Merge routine from Mergesort to merge runs
 - Repeat until you have only one run (one sorted chunk)
 - Text gives some examples
- But ... how important is external sorting?

Internal Memory is getting cheap...

External Sorting

- For most data sets, internal sorting in a large memory space is possible and intricate external sorts are not required
 - Tapes seldom used these days random access disks are faster and getting cheaper with greater capacity
 - Operating systems provide very, very large virtual memory address spaces so it looks like an internal sort, even though you are using the disk
 - be careful though, you can end up doing a lot of disk I/O if you're not careful

Summary of Sorting

- Sorting choices:
 - > $O(N^2)$ Bubblesort, Selection Sort, Insertion Sort
 - > $O(N^x)$ Shellsort (x = 3/2, 4/3, 7/6, 2, etc. depending on increment sequence)
 - > O(N log N) average case running time:
 - <u>Heapsort</u>: uses 2 comparisons to move data (between children and between child and parent) may not be fast in practice (see graph)
 - <u>Mergesort</u>: easy to code but uses O(N) extra space
 - <u>Quicksort</u>: fastest in practice but trickier to code, O(N²) worst case

Practical Sorting

- When N is large, use Quicksort with median3 pivot
- For small N (< 20), the N log N sorts are slower due to extra overhead (larger constants in big-Oh notation)
 - > For N < 20, use Insertion sort
 - In Quicksort, do insertion sort when sub-array size < 20 (instead of partitioning)
- When you need a sorter
 - > remember the various candidate algorithms
 - > think about the type and quantity of your data
 - look up an appropriate reference implementation and adapt it to your requirements (ElementType, comparator, etc)