Sorting Summary

CSE 373 - Data Structures

May 15, 2002

Readings and References

- Reading
> Sections 7.8-7.11, Data Structures and Algorithm Analysis in C, Weiss
- Other References

How fast can we sort?

- Heapsort, Mergesort, and Quicksort all run in $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ best case running time
- Can we do any better?
- Can we believe LaMoC, Inc, which claims to have discovered an $\mathrm{O}(\mathrm{N} \log (\log \mathrm{N}))$ general purpose sorting algorithm?
> The US patent office probably believes it, do you?

No! (if using comparisons only)

- Recall our basic assumption: we can only compare two elements at a time
> we can only reduce the possible solution space by half each time we make a comparison
- Suppose you are given N elements
> Assume no duplicates
- How many possible orderings can you get?
> Example: $\mathrm{a}, \mathrm{b}, \mathrm{c}(\mathrm{N}=3)$

Permutations

- How many possible orderings can you get?
> Example: a, b, c ($\mathrm{N}=3$)
$>(\mathrm{abc}),(\mathrm{acb}),(\mathrm{b} a \mathrm{c}),(\mathrm{b} \mathrm{c} a),(\mathrm{c} a \mathrm{~b}),(\mathrm{c} \mathrm{b} a)$
> 6 orderings $=3 \cdot 2 \cdot 1=3$! (ie, " 3 factorial")
> All the possible permutations of a set of 3 elements
- For N elements
> N choices for the first position, $(\mathrm{N}-1)$ choices for the second position, ..., (2) choices, 1 choice
> $\mathrm{N}(\mathrm{N}-1)(\mathrm{N}-2) \cdots(2)(1)=\mathrm{N}$! possible orderings

Decision Tree

The leaves contain all the possible orderings of a, b, c
CSE 373 - Data Structures - 17 - Sorting Summary

Decision Trees

- A Decision Tree is a Binary Tree such that:
> Each node $=$ a set of orderings
- ie, the remaining solution space
> Each edge $=1$ comparison
> Each leaf $=1$ unique ordering
> How many leaves for N distinct elements?
- N!, ie, a leaf for each possible ordering
- Only 1 leaf has the ordering that is the desired correctly sorted arrangement

Decision Trees and Sorting

- Every sorting algorithm corresponds to a decision tree
> Finds correct leaf by choosing edges to follow
- ie, by making comparisons
> Each decision reduces the possible solution space by one half
- Run time is \geq maximum no. of comparisons
> maximum number of comparisons is the length of the longest path in the decision tree
- the length of the longest path is the depth of the tree

Decision Tree Depth Example

How many leaves on a tree?

- Suppose you have a binary tree of depth d . How many leaves can the tree have?
> $\mathrm{d}=1 \rightarrow$ at most 2 leaves,
$>\mathrm{d}=2 \rightarrow$ at most 4 leaves, etc.

How deep is it, Jim?

- A binary tree of depth d has at most $\mathbf{2}^{\mathbf{d}}$ leaves $>$ depth $\mathrm{d}=1 \rightarrow 2$ leaves, $\mathrm{d}=2 \rightarrow 4$ leaves, etc.
> Can prove by induction
- The decision tree has $\mathrm{L}=\mathrm{N}$! leaves
- Depth d must be deep enough such that $2^{d} \geq \mathrm{L}$ > and $2^{\mathrm{d}} \geq \mathrm{L} \rightarrow \mathrm{d} \geq \log \mathrm{L}$
- So the decision tree depth is $\mathrm{d} \geq \log (\mathrm{N}!)$

$\log (N!)$ is $\Omega(N \log N)$

$$
\log (N!)=\log (N \cdot(N-1) \cdot(N-2) \cdots(2) \cdot(1))
$$

$=\log N+\log (N-1)+\log (N-2)+\cdots+\log 2+\log 1$
$\geq \log N+\log (N-1)+\log (N-2)+\cdots+\log \frac{N}{2}$

$\geq \frac{N}{2} \log \frac{N}{2}$
$\geq \frac{N}{2}(\log N-\log 2)=\frac{N}{2} \log N-\frac{N}{2}$
$=\Omega(N \log N)$

$\Omega(\mathrm{N} \log \mathrm{N})$

- Run time of any comparison-based sorting algorithm is $\Omega(\mathbf{N} \log \mathrm{N})$
> Any sorting algorithm based on comparisons between elements requires $\Omega(\mathbf{N} \log \mathrm{N})$ comparisons
- Can never find an $\mathrm{O}(\mathrm{N} \log \log \mathrm{N})$ general purpose sorting algorithm
> sorry, LaMoC, Inc!
> get a clue, patent office

What about bucket sort?

- You may be saying to yourself
"But on slide 27 of the List lecture on April 5th, he showed that the bucket sort only takes $\mathrm{O}(\mathrm{N}+\mathrm{B})$ operations, what's up with that?"
- And I say to you: Advance knowledge of the data lets you do all sorts of magic
> perfect hash
> bucket sort, radix sort

Bucket Sort: Sorting integers

- Bucket sort: N integers in the range 0 to $B-1$
> Array Count has B elements ("buckets"), initialized to 0
> Given input integer i, Count[i]++
> After reading all \mathbf{N} numbers go through the \mathbf{B} buckets and read out the resulting sorted list
> \mathbf{N} operations to read and record the numbers plus B operations to recover the sorted numbers

Bucket Sort Run Time?

- What is the running time for sorting N integers?
> Running Time: $\mathrm{O}(\mathrm{B}+\mathrm{N})$
- $\quad \mathrm{B}$ to zero/scan the array and N to read the input > If B is $\Theta(N)$, running time for Bucket sort $=\mathbf{O}(N)$
- Doesn't this violate the $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ lower bound result??
- No - When we do Count[i]++, we are comparing one element with all B elements, not just two elements

Radix Sort: Sorting integers

- Radix sort $=$ multi-pass bucket sort of integers in the range 0 to $\mathrm{B}^{\mathrm{P}}-1$
> Bucket-sort from least significant to most significant "digit" (base B)
> Use linked list to store numbers that are in same bucket
> Requires $\mathrm{P}^{*}(\mathrm{~B}+\mathrm{N})$ operations where P is the number of passes (the number of base B digits in the largest possible input number)
> Do P passes instead of using B^{P} space

Radix Sort Example

data		0	1	2	3	4	5	6	7	8	9
	Bucket sort by 1's digit		721		$12 \underline{3}$				$\begin{array}{r} 537 \\ 67 \end{array}$	$\begin{array}{\|r\|} 47 \underline{8} \\ 3 \underline{8} \end{array}$	$\underline{9}$
537											
9											
721	Bucket sort by 10 's digit										
3		0	1	2	3	4	5	6	7	8	9
38		$\begin{aligned} & \underline{03} \\ & \underline{0} 9 \end{aligned}$		721	537			$\underline{6}$	$4 \underline{1} 8$		
123				123	$\underline{3} 8$						
is example uses $=10$ and base 10 its for simplicity of monstration. Larger cket counts should used in an actual plementation.	Bucket sort by 100's digit	0									9
			1	2	3	4	5	6	7	8	
		003	123			478	$\underline{537}$		721		
		-099									
		$\underline{038}$									
		$\underline{067}$									
15-May-02	CSE 373 - D	tures	17 -	orting	Sum					18	

Internal versus External Sorting

- So far assumed that accessing $\mathrm{A}[\mathrm{i}]$ is fast Array A is stored in internal memory (RAM)
> Algorithms so far are good for internal sorting
- What if A is so large that it doesn't fit in internal memory?
> Data on disk or tape
> Delay in accessing $\mathrm{A}[\mathrm{i}]-$ e.g. need to spin disk and move head

Internal versus External Sorting

- Need sorting algorithms that minimize disk/tape access time
> External sorting - Basic Idea:
- Load chunk of data into RAM, sort, store this "run" on disk/tape
- Use the Merge routine from Mergesort to merge runs
- Repeat until you have only one run (one sorted chunk)
- Text gives some examples
- But ... how important is external sorting?

Internal Memory is getting cheap...

Price (in US\$) for 1 MB of RAM

From: http://www.macresource.com/mrp/ramwatch/trend.shtml CSE 373 - Data Structures - 17 - Sorting Summary

External Sorting

- For most data sets, internal sorting in a large memory space is possible and intricate external sorts are not required
> Tapes seldom used these days - random access disks are faster and getting cheaper with greater capacity
> Operating systems provide very, very large virtual memory address spaces so it looks like an internal sort, even though you are using the disk
- be careful though, you can end up doing a lot of disk I/O if you're not careful

Okay...so let's talk about performance in practice

Summary of Sorting

- Sorting choices:
> $\mathrm{O}\left(\mathrm{N}^{2}\right)$ - Bubblesort, Selection Sort, Insertion Sort
> $\mathrm{O}\left(\mathrm{N}^{\mathrm{x}}\right)$ - Shellsort $(\mathrm{x}=3 / 2,4 / 3,7 / 6,2$, etc. depending on increment sequence)
> $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ average case running time:
- Heapsort: uses 2 comparisons to move data (between children and between child and parent) - may not be fast in practice (see graph)
- Mergesort: easy to code but uses $\mathrm{O}(\mathrm{N})$ extra space
- Quicksort: fastest in practice but trickier to code, $\mathrm{O}\left(\mathrm{N}^{2}\right)$ worst case

Practical Sorting

- When N is large, use Quicksort with median3 pivot
- For small $\mathrm{N}(<20)$, the $\mathrm{N} \log \mathrm{N}$ sorts are slower due to extra overhead (larger constants in big-Oh notation)
> For $\mathrm{N}<20$, use Insertion sort
> In Quicksort, do insertion sort when sub-array size < 20 (instead of partitioning)
- When you need a sorter
> remember the various candidate algorithms
> think about the type and quantity of your data
> look up an appropriate reference implementation and adapt it to your requirements (ElementType, comparator, etc)

