
Sorting Summary

CSE 373 - Data Structures
May 15, 2002

15-May-02 CSE 373 - Data Structures - 17 - Sorting Summary 2

Readings and References

• Reading
› Sections 7.8-7.11, Data Structures and Algorithm Analysis in C,

Weiss

• Other References

15-May-02 CSE 373 - Data Structures - 17 - Sorting Summary 3

How fast can we sort?

• Heapsort, Mergesort, and Quicksort all run
in O(N log N) best case running time

• Can we do any better?
• Can we believe LaMoC, Inc, which claims

to have discovered an O(N log(log N))
general purpose sorting algorithm?
› The US patent office probably believes it, do

you?

15-May-02 CSE 373 - Data Structures - 17 - Sorting Summary 4

No! (if using comparisons only)

• Recall our basic assumption: we can only
compare two elements at a time
› we can only reduce the possible solution space

by half each time we make a comparison
• Suppose you are given N elements

› Assume no duplicates
• How many possible orderings can you get?

› Example: a, b, c (N = 3)

15-May-02 CSE 373 - Data Structures - 17 - Sorting Summary 5

Permutations

• How many possible orderings can you get?
› Example: a, b, c (N = 3)
› (a b c), (a c b), (b a c), (b c a), (c a b), (c b a)
› 6 orderings = 3•2•1 = 3! (ie, “3 factorial”)
› All the possible permutations of a set of 3 elements

• For N elements
› N choices for the first position, (N-1) choices for

the second position, …, (2) choices, 1 choice
› N(N-1)(N-2)h(2)(1)= N! possible orderings

15-May-02 CSE 373 - Data Structures - 17 - Sorting Summary 6

Decision Tree
a < b < c, b < c < a,
c < a < b, a < c < b,
b < a < c, c < b < a

a < b < c
c < a < b
a < c < b

b < c < a
 b < a < c
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

b < c < a
 b < a < c

c < b < a

b < c < a b < a < c

a < b a > b

a > ca < c

b < c b > c

b < c b > c

c < a c > a

The leaves contain all the possible orderings of a, b, c

15-May-02 CSE 373 - Data Structures - 17 - Sorting Summary 7

Decision Trees
• A Decision Tree is a Binary Tree such that:

› Each node = a set of orderings
• ie, the remaining solution space

› Each edge = 1 comparison
› Each leaf = 1 unique ordering
› How many leaves for N distinct elements?

• N!, ie, a leaf for each possible ordering

• Only 1 leaf has the ordering that is the
desired correctly sorted arrangement

15-May-02 CSE 373 - Data Structures - 17 - Sorting Summary 8

Decision Trees and Sorting
• Every sorting algorithm corresponds to a

decision tree
› Finds correct leaf by choosing edges to follow

• ie, by making comparisons
› Each decision reduces the possible solution

space by one half
• Run time is ≥ maximum no. of comparisons

› maximum number of comparisons is the length
of the longest path in the decision tree

• the length of the longest path is the depth of the tree

15-May-02 CSE 373 - Data Structures - 17 - Sorting Summary 9

Decision Tree Depth Example
a < b < c, b < c < a,
c < a < b, a < c < b,
b < a < c, c < b < a

a < b < c
c < a < b
a < c < b

b < c < a
 b < a < c
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

b < c < a
 b < a < c

c < b < a

b < c < a b < a < c

a < b a > b

a > ca < c

b < c b > c

b < c b > c

c < a c > a

possible orders

actual order

15-May-02 CSE 373 - Data Structures - 17 - Sorting Summary 10

How many leaves on a tree?

• Suppose you have a binary tree of depth d .
How many leaves can the tree have?
› d = 1 � at most 2 leaves,
› d = 2 � at most 4 leaves, etc.

15-May-02 CSE 373 - Data Structures - 17 - Sorting Summary 11

How deep is it, Jim?

• A binary tree of depth d has at most 2d leaves
› depth d = 1 � 2 leaves, d = 2 � 4 leaves, etc.
› Can prove by induction

• The decision tree has L = N! leaves
• Depth d must be deep enough such that 2d ≥ L

› and 2d ≥ L � d ≥ log L
• So the decision tree depth is d ≥ log(N!)

15-May-02 CSE 373 - Data Structures - 17 - Sorting Summary 12

log(N!) is Ω(NlogN)

()

)log(
2

log
2

)2log(log
2

2
log

2

2
log)2log()1log(log

1log2log)2log()1log(log
)1()2()2()1(log)!log(

NN

NNNNN

NN

NNNN

NNN
NNNN

Ω=

−=−≥

≥

++−+−+≥

+++−+−+=
⋅−⋅−⋅=

m

m

m

select just the
first N/2 terms

each of the selected
terms is ≥ logN/2

15-May-02 CSE 373 - Data Structures - 17 - Sorting Summary 13

Ω(N log N)
• Run time of any comparison-based sorting

algorithm is ΩΩΩΩ(N log N)
› Any sorting algorithm based on comparisons

between elements requires ΩΩΩΩ(N log N) comparisons
• Can never find an O(N log log N) general

purpose sorting algorithm
› sorry, LaMoC, Inc!
› get a clue, patent office

15-May-02 CSE 373 - Data Structures - 17 - Sorting Summary 14

What about bucket sort?

• You may be saying to yourself
“But on slide 27 of the List lecture on April
5th, he showed that the bucket sort only takes
O(N+B) operations, what's up with that?”

• And I say to you: Advance knowledge of
the data lets you do all sorts of magic

› perfect hash
› bucket sort, radix sort

15-May-02 CSE 373 - Data Structures - 17 - Sorting Summary 15

Bucket Sort: Sorting integers
• Bucket sort: N integers in the range 0 to B-1

› Array Count has B elements (“buckets”),
initialized to 0

› Given input integer i, Count[i]++
› After reading all N numbers go through the B

buckets and read out the resulting sorted list
› N operations to read and record the numbers plus

B operations to recover the sorted numbers

15-May-02 CSE 373 - Data Structures - 17 - Sorting Summary 16

Bucket Sort Run Time?
• What is the running time for sorting N

integers?
› Running Time: O(B+N)

• B to zero/scan the array and N to read the input
› If B is Θ(N), running time for Bucket sort = O(N)

• Doesn’t this violate the O(N log N) lower
bound result??

• No – When we do Count[i]++, we are
comparing one element with all B elements,
not just two elements

15-May-02 CSE 373 - Data Structures - 17 - Sorting Summary 17

Radix Sort: Sorting integers
• Radix sort = multi-pass bucket sort of integers

in the range 0 to BP-1
› Bucket-sort from least significant to most

significant “digit” (base B)
› Use linked list to store numbers that are in same

bucket
› Requires P*(B+N) operations where P is the

number of passes (the number of base B digits in
the largest possible input number)

› Do P passes instead of using BP space

15-May-02 CSE 373 - Data Structures - 17 - Sorting Summary 18

67
123

38
3

721
9

537
478

Bucket sort
by 1’s digit

Bucket sort
by 10’s digit

Bucket sort
by 100’s digit

0 1

721

2 3

3
123

4 5 6 7

537
67

8

478
38

9

9

0

03
09

1 2

721
123

3

537
38

4 5 6

67

7

478

8 9

0

003
009
038
067

1

123

2 3 4

478

5

537

6 7

721

8 9

data

This example uses
B=10 and base 10
digits for simplicity of
demonstration. Larger
bucket counts should
be used in an actual
implementation.

Radix Sort Example

15-May-02 CSE 373 - Data Structures - 17 - Sorting Summary 19

Internal versus External Sorting

• So far assumed that accessing A[i] is fast –
Array A is stored in internal memory (RAM)
› Algorithms so far are good for internal sorting

• What if A is so large that it doesn’t fit in
internal memory?
› Data on disk or tape
› Delay in accessing A[i] – e.g. need to spin

disk and move head

15-May-02 CSE 373 - Data Structures - 17 - Sorting Summary 20

Internal versus External Sorting

• Need sorting algorithms that minimize disk/tape
access time
› External sorting – Basic Idea:

• Load chunk of data into RAM, sort, store this “run”
on disk/tape

• Use the Merge routine from Mergesort to merge runs
• Repeat until you have only one run (one sorted chunk)
• Text gives some examples

• But … how important is external sorting?

15-May-02 CSE 373 - Data Structures - 17 - Sorting Summary 21

Internal Memory is getting cheap…

From: http://www.macresource.com/mrp/ramwatch/trend.shtml

Price (in US$) for 1 MB of RAM

15-May-02 CSE 373 - Data Structures - 17 - Sorting Summary 22

External Sorting

• For most data sets, internal sorting in a large
memory space is possible and intricate external
sorts are not required
› Tapes seldom used these days – random access disks

are faster and getting cheaper with greater capacity
› Operating systems provide very, very large virtual

memory address spaces so it looks like an internal
sort, even though you are using the disk

• be careful though, you can end up doing a lot of disk I/O if
you’re not careful

Okay…so let’s talk about
performance in practice

Input Size N

R
un

 ti
m

e
(in

 se
co

nd
s)

Insertion sort Heapsort

Shellsort

Quicksort

[Data from
textbook
Chap. 7]

Input Size N

R
un

 ti
m

e
(in

 se
co

nd
s)

Insertion sort

Heapsort

Shellsort

Quicksort

15-May-02 CSE 373 - Data Structures - 17 - Sorting Summary 25

Summary of Sorting
• Sorting choices:

› O(N2) – Bubblesort, Selection Sort, Insertion Sort
› O(Nx) – Shellsort (x = 3/2, 4/3, 7/6, 2, etc. depending on

increment sequence)
› O(N log N) average case running time:

• Heapsort: uses 2 comparisons to move data (between
children and between child and parent) – may not be
fast in practice (see graph)

• Mergesort: easy to code but uses O(N) extra space
• Quicksort: fastest in practice but trickier to code, O(N2)

worst case

15-May-02 CSE 373 - Data Structures - 17 - Sorting Summary 26

Practical Sorting
• When N is large, use Quicksort with median3 pivot
• For small N (< 20), the N log N sorts are slower due

to extra overhead (larger constants in big-Oh notation)
› For N < 20, use Insertion sort
› In Quicksort, do insertion sort when sub-array size < 20

(instead of partitioning)
• When you need a sorter

› remember the various candidate algorithms
› think about the type and quantity of your data
› look up an appropriate reference implementation and adapt

it to your requirements (ElementType, comparator, etc)

