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Readings and References

e Reading

> Section 7.7, Data Structures and Algorithm Analysis in C, Weiss

e Other References
> CLR
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Sorting ldeas - swap adjacent

e Swap adjacent elements
> Bubble sort
o it works, but it's always slow

> Insertion sort
« works well on already sorted or partially sorted input

 low overhead so it works well on small inputs or as the
basic sorter for a larger algorithm
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Sorting ldeas - swap non-adjacent

e Swap non-adjacent elements

> Shell sort
e resolves multiple inversions with a single swap
 does an insertion sort of variable sized sub-arrays
e choice of increments critical

> Heap sort
* resolves multiple inversions with a single swap
* does insertion sort of paths through a binary heap
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Sorting ldeas - recursion and merge

e Merging two sorted arrays Is fast

> Partition the array and sort each part separately,
then merge the results

> The merge can resolve many inversions with each
element merged

e Merge sort
> Fast
> requires extra O(N) temporary array
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Sorting Ideas - recursion and join

 Joining two sorted arrays can be very fast

> Partition the array into a set of little elements and a
set of big elements, sort each partition, and join them

> The partitioning operation can move elements a long
way towards the final location in one move

e Quick Sort

> Fast
> In-place sort (no extra space required)
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Quicksort

 Quicksort uses a divide and conquer strategy,
but does not require the O(N) extra space that
MergeSort does
> Partition array into left and right sub-arrays

 the elements In left sub-array are all less than pivot
 elements in right sub-array are all greater than pivot

> Recursively sort left and right sub-arrays
> Concatenate left and right sub-arrays in O(1) time
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“Four easy steps”

e Tosortanarray S

> If the number of elements In Si1s 0 or 1, then
return. The array Is sorted.

> Pick an element v in S. This is the pivot value.

> Partition S-{v} into two disjoint subsets, S; =
{all values x<v}, and S, = {all values x>v}.

> Return QuickSort(S,), v, QuickSort(S,)
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The steps of QuickSort

select pivot value

- o L
Sl 82 partition S
G @ T g

QuickSort(S,) and
S1

S, QuickSort(S,)

S 0O 13 26 31 43 57 65 75 81 92 Presto! S is sorted

[Weiss]
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Quicksort Example

« Sort the array containing:
9 16 4 15 2 5171

\EiVOt

Partiton 4 2 51 < 9 < 16 15 17

Partiton 2 1 4 5 15 16 17
\ } 1 v
1 2 5 15 17
W V4 ¥ J/
Concatenate 1 2 4 5 15 16 17
\A v /
Concatenate 1 2 45 9 15 16 17
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Detalls, detalls

» “The algorithm so far lacks quite a few of
the detalls”™

* Implementing the actual partitioning
* Picking the pivot

> want a value that will cause |S,| and |S,| to be
non-zero, and close to equal in size if possible

* Dealing with cases where the element
equals the pivot
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Quicksort Partitioning

Need to partition the array into left and right
sub-arrays

> the elements In left sub-array are < pivot

> elements In right sub-array are = pivot

How do the elements get to the correct partition?
> Choose an element from the array as the pivot

> Make one pass through the rest of the array and
swap as needed to put elements In partitions
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Partitioning Is done In-Place

* One implementation (there are others)
> median3 finds pivot and sorts left, center, right
> Swap pivot with next to last element
> Set pointers I and j to start and end of array
> Increment 1 until you hit element A[i] > pivot
> Decrement j until you hit element A[j] < pivot
> Swap A[i] and A[j]
> Repeat until 1 and j cross
> Swap pivot (= A[N-2]) with A[i]
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median-of-3
pivot = 6
median3 sorts 3 elements

|:|eft1 J:rlght'l

while(A[++i]<pivot){}
while(A[--j]>pivot){}

swap(&A[i],&A[j])

while(A[++i]<pivot){}
while(A[--j]>pivot){}

swap(&A[i],&Al[j])
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S, < pivot S, > pivot

pivot

while(A[++i]<pivot){}
while(A[--j]>pivot){}

swap(&A[i],&A[right-1])



Choosing the Pivot (1)

 First (bad) Idea |
> Pick the first element as inOt S,/=0 Cpé S,|=IS]-1

> What If it 1s the smallest or
largest?

> What If the array Is sorted?

How many recursive calls does (@) @
guicksort make? (D) ()5 15 16>
« O(N) calls, and it does O(N) () ()15 18>
work for each call, so you do
O(N?) work when the array is @ @
already sorted!
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Choosing the Pivot (2)

e 2" (okay) ldea:

> Pick a random element to be the pivot
> Gets rid of asymmetry in left/right sizes
> Actually works pretty well

> But It requires calls to pseudo-random number
generator
e expensive in terms of time
e many implementations are not particularly random
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Choosing the Pivot (3a)

e Third Idea
> Pick median element (N/2t largest element)
> This is great ... it splits S exactly in two

> But it’s hard to find the median element without
sorting the entire array first, which is why we
are here in the first place ...
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Choosing the Pivot (3b)

e Find the median of the first, middle and last
elements - “median of 3”

If the data in the array Is not sorted, median
of 3 Is similar to picking a random pivot

If the data In the array Is presorted, this will
pick a value near the actual median of the
entire array, which is good
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Median-of-Three Pivot

Find the median of the first, middle and last element

2 49 15 16 15 186
\lg/ \i/

Takes only O(1) time and not error- prone like the
pseudo-random pivot choice

L_ess chance of poor performance as compared to
looking at only 1 element

For sorted inputs, splits array nicely in half each
recursion
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All]==pivot?

e Sto

p and swap

> whi | e( A ++i ] <pi vot ) {}
> whil e(A[--j]>pivot){}

o Alt
and

nough this seems a little odd, it moves |
) towards the middle

> 1

ne benefit of balanced partitions when 1 and j

cross in the middle outweighs the extra cost of
swapping elements that are equal to the pivot

15-May-02
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Quicksort Best Case Performance

 Algorithm always chooses best pivot and
splits sub-arrays in half at each recursion
> T(0)=T(1) =0(1)
e constant time if O or 1 element
> For N > 1, 2 recursive calls plus linear time for
partitioning
> T(N) = 2T(N/2) + O(N)
e Same recurrence relation as Mergesort
> T(N) = O(N log N)
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Quicksort Worst Case Performance

 Algorithm always chooses the worst pivot —
one sub-array IS empty at each recursion
> T(0) =T(1) = 0(1)
> T(N) = T(N-1) + O(N)
> T(N-2) + O(N-1) + O(N)

T(0)+O(1) + ... + O(N)
> T(N) = O(N?)

 Fortunately, average case performance Is
O(N log N) (see text for proof)
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