
Quick Sort

CSE 373 - Data Structures
May 15, 2002

15-May-02 CSE 373 - Data Structures - 16 - Quick Sort 2

Readings and References

• Reading
› Section 7.7, Data Structures and Algorithm Analysis in C, Weiss

• Other References
› C LR

15-May-02 CSE 373 - Data Structures - 16 - Quick Sort 3

Sorting Ideas - swap adjacent

• Swap adjacent elements
› Bubble sort

• it works, but it's always slow

› Insertion sort
• works well on already sorted or partially sorted input
• low overhead so it works well on small inputs or as the

basic sorter for a larger algorithm

15-May-02 CSE 373 - Data Structures - 16 - Quick Sort 4

Sorting Ideas - swap non-adjacent

• Swap non-adjacent elements
› Shell sort

• resolves multiple inversions with a single swap
• does an insertion sort of variable sized sub-arrays
• choice of increments critical

› Heap sort
• resolves multiple inversions with a single swap
• does insertion sort of paths through a binary heap

15-May-02 CSE 373 - Data Structures - 16 - Quick Sort 5

Sorting Ideas - recursion and merge

• Merging two sorted arrays is fast
› Partition the array and sort each part separately,

then merge the results
› The merge can resolve many inversions with each

element merged
• Merge sort

› Fast
› requires extra O(N) temporary array

15-May-02 CSE 373 - Data Structures - 16 - Quick Sort 6

Sorting Ideas - recursion and join

• Joining two sorted arrays can be very fast
› Partition the array into a set of little elements and a

set of big elements, sort each partition, and join them
› The partitioning operation can move elements a long

way towards the final location in one move
• Quick Sort

› Fast
› in-place sort (no extra space required)

15-May-02 CSE 373 - Data Structures - 16 - Quick Sort 7

Quicksort

• Quicksort uses a divide and conquer strategy,
but does not require the O(N) extra space that
MergeSort does
› Partition array into left and right sub-arrays

• the elements in left sub-array are all less than pivot
• elements in right sub-array are all greater than pivot

› Recursively sort left and right sub-arrays
› Concatenate left and right sub-arrays in O(1) time

15-May-02 CSE 373 - Data Structures - 16 - Quick Sort 8

“Four easy steps”

• To sort an array S
› If the number of elements in S is 0 or 1, then

return. The array is sorted.
› Pick an element v in S. This is the pivot value.
› Partition S-{v} into two disjoint subsets, S1 =

{all values x≤v}, and S2 = {all values x≥v}.
› Return QuickSort(S1), v, QuickSort(S2)

15-May-02 CSE 373 - Data Structures - 16 - Quick Sort 9

The steps of QuickSort

13
81

92

43

65

31 57

26

75
0

S select pivot value

13 8192

43 65
31

5726

750S1 S2 partition S

13 4331 57260

S1
81 927565

S2
QuickSort(S1) and

QuickSort(S2)

13 4331 57260 65 81 9275S Presto! S is sorted
[Weiss]

15-May-02 CSE 373 - Data Structures - 16 - Quick Sort 10

Quicksort Example
• Sort the array containing:

9 16 4 15 2 5 17 1

Partition 4 2 5 1 9 16 15 17

 2 1 4 5 15 16 17

 1 2 5 15 17

 1 2 4 5 15 16 17

Concatenate 1 2 4 5 9 15 16 17

< <

Partition

Concatenate

pivot

15-May-02 CSE 373 - Data Structures - 16 - Quick Sort 11

Details, details
• “The algorithm so far lacks quite a few of

the details”
• Implementing the actual partitioning
• Picking the pivot

› want a value that will cause |S1| and |S2| to be
non-zero, and close to equal in size if possible

• Dealing with cases where the element
equals the pivot

15-May-02 CSE 373 - Data Structures - 16 - Quick Sort 12

Quicksort Partitioning
• Need to partition the array into left and right

sub-arrays
› the elements in left sub-array are ≤ pivot
› elements in right sub-array are ≥ pivot

• How do the elements get to the correct partition?
› Choose an element from the array as the pivot
› Make one pass through the rest of the array and

swap as needed to put elements in partitions

15-May-02 CSE 373 - Data Structures - 16 - Quick Sort 13

Partitioning is done In-Place
• One implementation (there are others)

› median3 finds pivot and sorts left, center, right
› Swap pivot with next to last element
› Set pointers i and j to start and end of array
› Increment i until you hit element A[i] > pivot
› Decrement j until you hit element A[j] < pivot
› Swap A[i] and A[j]
› Repeat until i and j cross
› Swap pivot (= A[N-2]) with A[i]

8 1 4 9 0 3 5 2 7 6

0 1 2 3 4 5 6 7 8 9

0 1 4 9 7 3 5 2 6 8

median-of-3
pivot = 6
median3 sorts 3 elements

0 1 4 9 7 3 5 2 6 8

i j

while(A[++i]<pivot){}
0 1 4 9 7 3 5 2 6 8

i j

0 1 4 9 7 3 5 2 6 8

i j while(A[--j]>pivot){}

0 1 4 2 7 3 5 9 6 8

i j swap(&A[i],&A[j])

i=left; j=right-1

while(A[++i]<pivot){}
0 1 4 2 7 3 5 9 6 8

i j

0 1 4 2 7 3 5 9 6 8

i j while(A[--j]>pivot){}

0 1 4 2 5 3 7 9 6 8

i j swap(&A[i],&A[j])

while(A[++i]<pivot){}
0 1 4 2 5 3 7 9 6 8

i j

0 1 4 2 5 3 7 9 6 8

ij while(A[--j]>pivot){}

0 1 4 2 5 3 6 9 7 8

ij swap(&A[i],&A[right-1])

S1 < pivot
pivot

S2 > pivot

15-May-02 CSE 373 - Data Structures - 16 - Quick Sort 16

Choosing the Pivot (1)
• First (bad) Idea

› Pick the first element as pivot
› What if it is the smallest or

largest?
› What if the array is sorted?

How many recursive calls does
quicksort make?

• O(N) calls, and it does O(N)
work for each call, so you do
O(N2) work when the array is
already sorted!

2 16 4 15 9∅

|S1|=0

pivot

|S2|=|S|-1

2 4 9 15 16∅

4 9 15 16∅

9 15 16∅

15 16∅

15-May-02 CSE 373 - Data Structures - 16 - Quick Sort 17

Choosing the Pivot (2)

• 2nd (okay) Idea:
› Pick a random element to be the pivot
› Gets rid of asymmetry in left/right sizes
› Actually works pretty well
› But it requires calls to pseudo-random number

generator
• expensive in terms of time
• many implementations are not particularly random

15-May-02 CSE 373 - Data Structures - 16 - Quick Sort 18

Choosing the Pivot (3a)

• Third idea
› Pick median element (N/2th largest element)
› This is great … it splits S exactly in two
› But it’s hard to find the median element without

sorting the entire array first, which is why we
are here in the first place ...

15-May-02 CSE 373 - Data Structures - 16 - Quick Sort 19

Choosing the Pivot (3b)

• Find the median of the first, middle and last
elements - “median of 3”

• If the data in the array is not sorted, median
of 3 is similar to picking a random pivot

• If the data in the array is presorted, this will
pick a value near the actual median of the
entire array, which is good

15-May-02 CSE 373 - Data Structures - 16 - Quick Sort 20

Median-of-Three Pivot
• Find the median of the first, middle and last element

• Takes only O(1) time and not error-prone like the
pseudo-random pivot choice

• Less chance of poor performance as compared to
looking at only 1 element

• For sorted inputs, splits array nicely in half each
recursion

2 4 9 15 16

9

5 4 2 15 16

5

15-May-02 CSE 373 - Data Structures - 16 - Quick Sort 21

A[i]==pivot?

• Stop and swap
› while(A[++i]<pivot){}

› while(A[--j]>pivot){}

• Although this seems a little odd, it moves i
and j towards the middle
› the benefit of balanced partitions when i and j

cross in the middle outweighs the extra cost of
swapping elements that are equal to the pivot

15-May-02 CSE 373 - Data Structures - 16 - Quick Sort 22

Quicksort Best Case Performance
• Algorithm always chooses best pivot and

splits sub-arrays in half at each recursion
› T(0) = T(1) = O(1)

• constant time if 0 or 1 element

› For N > 1, 2 recursive calls plus linear time for
partitioning

› T(N) = 2T(N/2) + O(N)
• Same recurrence relation as Mergesort

› T(N) = O(N log N)

15-May-02 CSE 373 - Data Structures - 16 - Quick Sort 23

Quicksort Worst Case Performance
• Algorithm always chooses the worst pivot –

one sub-array is empty at each recursion
› T(0) = T(1) = O(1)
› T(N) = T(N-1) + O(N)
› = T(N-2) + O(N-1) + O(N)
› = T(0) + O(1) + … + O(N)
› T(N) = O(N2)

• Fortunately, average case performance is
O(N log N) (see text for proof)

