Heap Sort

CSE 373 - Data Structures
May 10, 2002

Readings and References

» Reading

> Sections 7.5, Data Structures and Algorithm Analysis in C, Weiss

e Other References

10-May-02 CSE 373 - Data Structures - 15 - Heap Sort

Binary Search Trees for Sorting?

o Shell sort with Hibbard's increments got us
to O(N19)
« Can we beat O(N'®) using a BST to sort N
elements?
> Insert each element into an initially empty BST
> Do an In-Order traversal to get sorted output
* Running time:
> N Inserts at O(log N) apiece = O(N log N)
> plus O(N) for In-Order traversal
> O(N log N) total which is o(N1)

10-May-02 CSE 373 - Data Structures - 15 - Heap Sort

Binary Search Tree sort issue

» Extra Space

> Need to allocate space for tree nodes and
pointers

> O(N) extra space, not in place sorting
» What if the tree is complete, and we use an
array representation — can we sort in place?

> Recall your favorite data structure with the
initials B. H.

10-May-02 CSE 373 - Data Structures - 15 - Heap Sort

Binary Heaps

» A binary heap is a binary tree that is:

> Complete: the tree is completely filled except
possibly the bottom level, which is filled from left
to right

> Satisfies the heap order property
 every node is less than or equal to its children
» orevery node is greater than or equal to its children

* The root node is always the smallest node
> or the largest, depending on the heap order

10-May-02 CSE 373 - Data Structures - 15 - Heap Sort 5

Heap order property

A heap provides limited ordering information

» Each path is sorted, but the subtrees are not
sorted relative to each other

> A binary heap is NOT a binary search tree

() @%D (8)
®(® @ @

@\@ S DO®

These are all valid binary heaps (maximum)

10-May-02 CSE 373 - Data Structures - 15 - Heap Sort 6

Structure property

» A binary heap is a complete tree

> All nodes are in use except for possibly the right
end of the bottom row
 Array implementation is compact because we
know how many children there are and we
know that they are all present
> Nno pointers are needed, we can directly calculate
subscript offsets to the nodes of the tree

10-May-02 CSE 373 - Data Structures - 15 - Heap Sort 7

Heap Sort using an array

* Root node = A[0]

 Children of A[i] = A[2i+1], A[2i+2]

» Keep track of current size N (number of
nodes)

e N @
we [7]s]el2]a] [[| @ ®
indeX01234567

N=5

10-May-02 CSE 373 - Data Structures - 15 - Heap Sort 8

Using Binary Heaps for Sorting

* Build a max-heap Build @
* Do N DeleteMax operations Maxheap (8) (®
and store each Max element as @ @

it comes out of the heap

1 Removal = 1 Addition

» Every time we do a DeleteMin, the heap
gets smaller by one node, and we have one
more node to store

> Store the data at the end of the heap array

« Data comes out in largest to | > Not "in the heap" but it is in the heap array

smallest order DeleteMax ~ (6) (6)
« Where can we put the 5 @ Ya'“e‘6‘5‘4‘2‘7‘ L @ @

elements as they are removed > @ ndex 0123 4 5 6 7 > @

from the heap? N=4
10-May-02 CSE 373 - Data Structures - 15 - Heap Sort 9 10-May-02 CSE 373 - Data Structures - 15 - Heap Sort 10

Heap Sort is In-place Heapsort: Analysis

o After all the DeleteMins, the heap is gone * Running time

but the array is full and is in sorted order > time to build max-heap is O(N)
* Note that this heap implementation uses > time for N DeleteMax operations is N O(log N)

index O for data and has no sentinel value > total time is O(N log N)

@ Can also show that running time is Q(N log
N) for some inputs,
we (2] a]5]6]7] @ ®) P
infex o 1 2 3 4 5 6 7 > 50 worst case is ©(N log N)
® @

N=0

10-May-02 CSE 373 - Data Structures - 15 - Heap Sort 11

> Average case running time is also O(N log N)

10-May-02 CSE 373 - Data Structures - 15 - Heap Sort 12

