
Heap Sort

CSE 373 - Data Structures
May 10, 2002

10-May-02 CSE 373 - Data Structures - 15 - Heap Sort 2

Readings and References

• Reading
› Sections 7.5, Data Structures and Algorithm Analysis in C, Weiss

• Other References

10-May-02 CSE 373 - Data Structures - 15 - Heap Sort 3

Binary Search Trees for Sorting?
• Shell sort with Hibbard's increments got us

to O(N1.5)
• Can we beat O(N1.5) using a BST to sort N

elements?
› Insert each element into an initially empty BST
› Do an In-Order traversal to get sorted output

• Running time:
› N Inserts at O(log N) apiece = O(N log N)
› plus O(N) for In-Order traversal
› O(N log N) total which is o(N1.5)

10-May-02 CSE 373 - Data Structures - 15 - Heap Sort 4

Binary Search Tree sort issue

• Extra Space
› Need to allocate space for tree nodes and

pointers
› O(N) extra space, not in place sorting

• What if the tree is complete, and we use an
array representation – can we sort in place?
› Recall your favorite data structure with the

initials B. H.

10-May-02 CSE 373 - Data Structures - 15 - Heap Sort 5

Binary Heaps
• A binary heap is a binary tree that is:

› Complete: the tree is completely filled except
possibly the bottom level, which is filled from left
to right

› Satisfies the heap order property
• every node is less than or equal to its children
• or every node is greater than or equal to its children

• The root node is always the smallest node
› or the largest, depending on the heap order

10-May-02 CSE 373 - Data Structures - 15 - Heap Sort 6

Heap order property
• A heap provides limited ordering information
• Each path is sorted, but the subtrees are not

sorted relative to each other
› A binary heap is NOT a binary search tree

7

5 6

2 4

0

0 1

-1

8

4 7

1 2 6
These are all valid binary heaps (maximum)

10-May-02 CSE 373 - Data Structures - 15 - Heap Sort 7

Structure property

• A binary heap is a complete tree
› All nodes are in use except for possibly the right

end of the bottom row
• Array implementation is compact because we

know how many children there are and we
know that they are all present
› no pointers are needed, we can directly calculate

subscript offsets to the nodes of the tree

10-May-02 CSE 373 - Data Structures - 15 - Heap Sort 8

Heap Sort using an array

• Root node = A[0]
• Children of A[i] = A[2i+1], A[2i+2]
• Keep track of current size N (number of

nodes)

N = 5

value

index

7

65

42

7 5 6 2 4
0 1 2 3 4 5 6 7

10-May-02 CSE 373 - Data Structures - 15 - Heap Sort 9

Using Binary Heaps for Sorting

• Build a max-heap
• Do N DeleteMax operations

and store each Max element as
it comes out of the heap

• Data comes out in largest to
smallest order

• Where can we put the
elements as they are removed
from the heap?

Build
Max-heap

DeleteMax

7

65

42

6

45

72

10-May-02 CSE 373 - Data Structures - 15 - Heap Sort 10

1 Removal = 1 Addition
• Every time we do a DeleteMin, the heap

gets smaller by one node, and we have one
more node to store
› Store the data at the end of the heap array
› Not "in the heap" but it is in the heap array

N = 4

value

index

6 5 4 2 7
0 1 2 3 4 5 6 7

6

45

72

10-May-02 CSE 373 - Data Structures - 15 - Heap Sort 11

 Heap Sort is In-place
• After all the DeleteMins, the heap is gone

but the array is full and is in sorted order
• Note that this heap implementation uses

index 0 for data and has no sentinel value

N = 0

value

index

2 4 5 6 7
0 1 2 3 4 5 6 7

2

54

76

10-May-02 CSE 373 - Data Structures - 15 - Heap Sort 12

Heapsort: Analysis
• Running time

› time to build max-heap is O(N)
› time for N DeleteMax operations is N O(log N)
› total time is O(N log N)

• Can also show that running time is Ω(N log
N) for some inputs,
› so worst case is ΘΘΘΘ(N log N)
› Average case running time is also O(N log N)

