
Sort Intro

CSE 373 - Data Structures
May 6, 2002

6-May-02 CSE 373 - Data Structures - 13 - Sort Intro 2

Readings and References

• Reading
› Sections 7.1-7.4, Data Structures and Algorithm Analysis in C,

Weiss

• Other References

6-May-02 CSE 373 - Data Structures - 13 - Sort Intro 3

Sorting

• Input
› an array A of data records
› a key value in each data record
› a comparison function which imposes a consistent

ordering on the keys
• Output

› reorganize the elements of A such that
• For any i and j, if i < j then A[i] ≤ A[j]

6-May-02 CSE 373 - Data Structures - 13 - Sort Intro 4

Consistent Ordering

• The comparison function must provided a
consistent ordering on the set of possible keys
› You can compare any two keys and get back an

indication of a < b, a > b, or a == b
› The comparison functions must be consistent

• If compare(a,b) says a<b, then compare(b,a) must say b>a
• If compare(a,b) says a=b, then compare(b,a) must say b=a
• If compare(a,b) says a=b, then equals(a,b) and

equals(b,a) must say a=b

6-May-02 CSE 373 - Data Structures - 13 - Sort Intro 5

Why Sort?
• Allows binary search of an N-element array

in O(log N) time
• Allows O(1) time access to kth largest

element in the array for any k
• Allows easy detection of any duplicates
• Sorting algorithms are among the most

frequently used algorithms in computer
science

6-May-02 CSE 373 - Data Structures - 13 - Sort Intro 6

Space

• How much space does the sorting algorithm
require in order to sort the collection of items?
› Do you need to copy and temporarily store the set

or some subset of the keys and data records?
› An algorithm which requires O(1) extra space is

known as an in place sorting algorithm
› Is the algorithm designed for in-memory operation

(internal) or does it use disk or tape (external)?

6-May-02 CSE 373 - Data Structures - 13 - Sort Intro 7

Time
• How fast is the algorithm?

› The definition of a sorted array A says that for any
i<j, A[i] < A[j]

› This means that you need to at least check on each
element at the very minimum
• which is O(N)

› And you could end up checking each element against
every other element
• which is O(N2)

› The big question is: How close to O(N) can you get?

n2

n· log2n

n

log2n

Faster is better!

6-May-02 CSE 373 - Data Structures - 13 - Sort Intro 9

Stability

• Stability: Does it rearrange the order of
input data records which have the same key
value (duplicates)?
› E.g. Phone book sorted by name. Now sort by

county – is the list still sorted by name within
each county?

› Extremely important property for databases
› A stable sorting algorithm is one which does

not rearrange the order of duplicate keys

6-May-02 CSE 373 - Data Structures - 13 - Sort Intro 10

Bubble Sort
• “Bubble” elements to to their proper place in

the array by comparing elements i and i+1, and
swapping if A[i] > A[i+1]
› Bubble every element towards its correct position

• last position has the largest element
• then bubble every element except the last one towards

its correct position
• then repeat until done or until the end of the quarter
• whichever comes first ...

6-May-02 CSE 373 - Data Structures - 13 - Sort Intro 11

Bubblesort
/* Bubble sort for integers */
#define SWAP(a,b) { int t; t=a; a=b; b=t; }

void bubble(int A[], int n) {

int i, j;

for(i=0;i<n;i++) { /* n passes thru the array */

/* From start to the end of unsorted part */

for(j=1;j<(n-i);j++) {

/* If adjacent items out of order, swap */

if(A[j-1] > A[j]) SWAP(A[j-1],A[j]); }

}

}

6-May-02 CSE 373 - Data Structures - 13 - Sort Intro 12

Put the largest element in its place

1 2 3 8 7 9 10 12 23 18 15 16 17 14

2 3larger value? 8 8

7 8

swap

1 2 3 7 8 9 10 12 23 18 15 16 17 14

9 10 12 23

18 23

swap

23

15 16 17 14

18 15

swap

23 16 17 14

18 15

swap

16 23 17 14

18 15

swap

16 17 23 14

18 15

swap

16 17 14 23

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

9 10 12 23 18 15 16 17 141 2 3

6-May-02 CSE 373 - Data Structures - 13 - Sort Intro 13

Put 2nd largest element in its place

1 2 3 7 8 9 10 12

2 3larger value? 7 8

7 8

swap

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

9 10 121 2 3

18 15 16 17 14 23

15 18 16 17 14 23

9 10 12 18 18

swap

15 16 18 17 14 23
swap

15 16 17 18 14 23
swap

15 16 17 14 18 23

Two elements done, only n-2 more to go ...

6-May-02 CSE 373 - Data Structures - 13 - Sort Intro 14

Bubble Sort: Just Say No
• “Bubble” elements to to their proper place in

the array by comparing elements i and i+1, and
swapping if A[i] > A[i+1]

• We bubblize for i=0 to n-1 (ie, n times)
• Each bubblization is a loop that makes n-i-1

comparisons
• This is O(n2)

6-May-02 CSE 373 - Data Structures - 13 - Sort Intro 15

Insertion Sort

• What if first k elements of array are already
sorted?
› 4, 7, 12, 5, 19, 16

• We can shift the tail of the sorted elements list
down and then insert next element into proper
position and we get k+1 sorted elements
› 4, 5, 7, 12, 19, 16

6-May-02 CSE 373 - Data Structures - 13 - Sort Intro 16

Insertion Sort
void InsertionSort(ElementType A[], int N) {

int j, P; ElementType Tmp;

for(P = 1; P < N; P++) {

Tmp = A[P];

for(j = P; j > 0 && A[j - 1] > Tmp;j--)

A[j] = A[j - 1];

A[j] = Tmp;

}

}

• Is Insertion sort in place? Stable? Running time = ?
• Do you recognize this sort?

› This is what we used for percolating binary heap elements.

6-May-02 CSE 373 - Data Structures - 13 - Sort Intro 17

Insertion Sort Characteristics

• In place and Stable
› One extra location for Tmp

• Running time
› Worst case is O(N2)

• reverse order input
• must copy every element every time

› Best case is Ω(N)
• in-order input
• copy down stops with first comparison every time

6-May-02 CSE 373 - Data Structures - 13 - Sort Intro 18

Inversions

• An inversion is a pair of elements in wrong
order
› i < j but A[i] > A[j]

• By definition, a sorted array has no inversions
• So you can think of sorting as the process of

removing inversions in the order of the
elements

6-May-02 CSE 373 - Data Structures - 13 - Sort Intro 19

Inversions

• A single value out of place can cause
several inversions

value

index

1 2 3 8 7 9 10 12
0 1 2 3 4 5 6 7

23 14 15 16
8 9 10 11 12 13

17 18

6-May-02 CSE 373 - Data Structures - 13 - Sort Intro 20

Reverse order

• All values out of place (reverse order)
causes numerous inversions

value

index

1 2 3 8 7 9 10 12

0 1 2 3 4 5 6 7

23 18 17 16

8 9 10 11 12 13

15 14

6-May-02 CSE 373 - Data Structures - 13 - Sort Intro 21

Inversions

• Our simple sorting algorithms so far swap
adjacent elements (explicitly or implicitly) and
remove just 1 inversion at a time
› Their running time is proportional to number of

inversions in array
• Given N distinct keys, the maximum possible

number of inversions is
()()

2
11...)2()1(

1

1

nninn
n

i

−==++−+− ∑
−

=

6-May-02 CSE 373 - Data Structures - 13 - Sort Intro 22

Inversions and Adjacent Swap Sorts

• "Average" list will contain half the max
number of inversions =
› So the average running time of Insertion sort

is Θ(N2)

• Any sorting algorithm that only swaps adjacent
elements requires Ω(N2) time because each
swap removes only one inversion

()()
4
1 nn −

