Sort Intro

CSE 373 - Data Structures

May 6, 2002

Readings and References

- Reading
> Sections 7.1-7.4, Data Structures and Algorithm Analysis in C, Weiss
- Other References

Consistent Ordering

- Input
> an array A of data records
, a key value in each data record
> a comparison function which imposes a consistent ordering on the keys
- Output
> reorganize the elements of A such that
- For any i and j , if $\mathrm{i}<\mathrm{j}$ then $\mathrm{A}[\mathrm{i}] \leq \mathrm{A}[\mathrm{j}]$

Why Sort?

- Allows binary search of an N -element array in $\mathrm{O}(\log \mathrm{N})$ time
- Allows $\mathrm{O}(1)$ time access to k th largest element in the array for any k
- Allows easy detection of any duplicates
- Sorting algorithms are among the most frequently used algorithms in computer science

Time

- How fast is the algorithm?
> The definition of a sorted array A says that for any $\mathrm{i}<\mathrm{j}, \mathrm{A}[\mathrm{i}]<\mathrm{A}[\mathrm{j}]$
> This means that you need to at least check on each element at the very minimum
- which is $\mathrm{O}(\mathrm{N})$
> And you could end up checking each element against every other element
- which is $\mathrm{O}\left(\mathrm{N}^{2}\right)$
> The big question is: How close to $\mathrm{O}(\mathrm{N})$ can you get? 6-May-02

Space

- How much space does the sorting algorithm require in order to sort the collection of items?
> Do you need to copy and temporarily store the set or some subset of the keys and data records?
> An algorithm which requires $\mathrm{O}(1)$ extra space is known as an in place sorting algorithm
> Is the algorithm designed for in-memory operation (internal) or does it use disk or tape (external)?

Stability

- Stability: Does it rearrange the order of input data records which have the same key value (duplicates)?
, E.g. Phone book sorted by name. Now sort by county - is the list still sorted by name within each county?
> Extremely important property for databases
> A stable sorting algorithm is one which does not rearrange the order of duplicate keys

Bubblesort

```
/* Bubble sort for integers */
```

/* Bubble sort for integers */
\#define SWAP (a,b) { int t; t=a; a=b; b=t; }
\#define SWAP (a,b) { int t; t=a; a=b; b=t; }
void bubble(int A[], int n) {
void bubble(int A[], int n) {
int i, j;
int i, j;
for(i=0;i<n;i++) { /* n passes thru the array */
for(i=0;i<n;i++) { /* n passes thru the array */
/* From start to the end of unsorted part */
/* From start to the end of unsorted part */
for(j=1;j<(n-i);j++) {
for(j=1;j<(n-i);j++) {
/* If adjacent items out of order, swap */
/* If adjacent items out of order, swap */
if(A[j-1] > A[j]) SWAP(A[j-1],A[j]); }
if(A[j-1] > A[j]) SWAP(A[j-1],A[j]); }
}
}
}

```
}
```


Bubble Sort

- "Bubble" elements to to their proper place in the array by comparing elements i and $i+1$, and swapping if $\mathrm{A}[\mathrm{i}]>\mathrm{A}[\mathrm{i}+1]$
> Bubble every element towards its correct position
- last position has the largest element
- then bubble every element except the last one towards its correct position
- then repeat until done or until the end of the quarter
- whichever comes first ...

Put the largest element in its place

Put $2^{\text {nd }}$ largest element in its place

Two elements done, only $\mathrm{n}-2$ more to go ...

Insertion Sort

- What if first k elements of array are already sorted?
> 4, 7, 12, 5, 19, 16
- We can shift the tail of the sorted elements list down and then insert next element into proper position and we get $\mathrm{k}+1$ sorted elements

$$
>\underline{4,5,7,12,19,16}
$$

Bubble Sort: Just Say No

- "Bubble" elements to to their proper place in the array by comparing elements i and $i+1$, and swapping if $\mathrm{A}[\mathrm{i}]>\mathrm{A}[\mathrm{i}+1]$
- We bubblize for $\mathrm{i}=0$ to $\mathrm{n}-1$ (ie, n times)
- Each bubblization is a loop that makes n-i-1 comparisons
- This is $\mathrm{O}\left(\mathrm{n}^{2}\right)$

6-May-02

```
void InsertionSort( ElementType A[ ], int N ) {
    int j, P; ElementType Tmp;
    for( P = 1; P < N; P++ ) {
        Tmp = A[ P ];
        for( j = P; j > O && A[ j - 1 ] > Tmp;j-- )
            A[ j ] = A[ j - 1 ];
        A[ j ] = Tmp;
    }
}
- Is Insertion sort in place? Stable? Running time = ?
- Do you recognize this sort?
> This is what we used for percolating binary heap elements.
```


Insertion Sort Characteristics

- In place and Stable
, One extra location for Tmp
- Running time
> Worst case is $\mathrm{O}\left(\mathrm{N}^{2}\right)$
- reverse order input
- must copy every element every time

Best case is $\Omega(\mathrm{N})$

- in-order input
- copy down stops with first comparison every time

Inversions

- A single value out of place can cause several inversions

Inversions

- An inversion is a pair of elements in wrong order

```
> i < j but A[i] > A[j]
```

- By definition, a sorted array has no inversions
- So you can think of sorting as the process of removing inversions in the order of the elements

Reverse order

- All values out of place (reverse order) causes numerous inversions

Inversions

- Our simple sorting algorithms so far swap adjacent elements (explicitly or implicitly) and remove just 1 inversion at a time
, Their running time is proportional to number of inversions in array
- Given N distinct keys, the maximum possible number of inversions is

$$
(n-1)+(n-2)+\ldots+1=\sum_{i=1}^{n-1} i=\frac{(n-1)(n)}{2}
$$

Inversions and Adjacent Swap Sorts

- "Average" list will contain half the max number of inversions $=\frac{(n-1)(n)}{4}$
> So the average running time of Insertion sort is $\Theta\left(\mathrm{N}^{2}\right)$
- Any sorting algorithm that only swaps adjacent elements requires $\Omega\left(\mathrm{N}^{2}\right)$ time because each swap removes only one inversion

