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Readings and References

e Reading

> Section 6.8, Data Structures and Algorithm Analysis in C, Weiss

e Other References
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Merging heaps

* Binary Heap Is a special purpose hot rod
> FIndMin, DeleteMin and Insert only
> does not support fast merges of two heaps

* For some applications, the items arrive In
prioritized clumps, rather than individually

* |s there somewhere In the heap design that
we can give up a little performance so that
we can gain faster merge capability?
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Binomial Queues

 Binomial Queues are designed to be merged
quickly with one another

 Using pointer-based design we can merge
large numbers of nodes at once by simply
pruning and grafting tree structures

* More overhead than Binary Heap, but the
flexibility I1s needed for Improved merging
speed
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Worst Case Run Times
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Binary Heap Binomial Queue
Insert ©(log N) ©(log N)
FindMin o)

DeleteMin ©(log N) ©(log N)

Merge O(N)
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Binomial Queues

* Binomial queues give up ©(1) FIndMin
performance In order to provide O(log N)
merge performance

* A binomial queue is a collection (or forest) of
heap-ordered trees

> Not just one tree, but a collection of trees
> each tree has a defined structure and capacity
> each tree has the familiar heap-order property
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Binomial Queue with 5 Trees

B, B, B, B, (BS
depth 4 3 2 1 0
number of elements 24=16 2°=8 2°=4 21=2 | 20=1
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Structure Property

e Each tree contains two
coples of the previous tree

> the second copy Is attached at
the root of the first copy

e The number of nodes In a
tree of depth d is exactly 2¢
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BZ Bl BO
depth 2 1 0
number of elements 22=4 21=2 | 20=1
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Powers of 2

« Any number N can be represented in base 2

> A base 2 value identifies the powers of 2 that
are to be included

® <& & o
IIIIIIIIIII
RS Hex,s | Decimal
11 3 3
1.0 0 4 4
141011 5 5
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Numbers of nodes

« Any number of entries In the binomial queue
can be stored In a forest of binomial trees

» Each tree holds the number of nodes
appropriate to its depth, ie 29 nodes

* So the structure of a forest of binomial trees
can be characterized with a single binary
number

> 100, - 1-22+ 0:21+ 0-2° = 4 nodes
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Structure Examples

5

N=2,,=10, 22=4 21=2 20=1
N:310:112 22=4 21=2 20=1

N=4,,=100,| 22=4 | 21=2 | 20=1




What Is a merge?

e There Is a direct correlation between
> the number of nodes In the tree
> the representation of that number In base 2
> and the actual structure of the tree

* \When we merge two queues, the number of
nodes in the new queue Is the sum of N,+N,

* \We can use that fact to help see how fast
merges can be accomplished
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Merge by adding the trees

* A merge of two queues can be viewed as
adding the two sets of trees together

> 0+0 =0 - neither queue has a tree at that
position and so neither does the sum

> 0+1 =1 - only one of the queues has a tree at
that position, and so it is copied into the sum
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Merge BQ.1 and BQ.2

Note that nothing was
done with any of the
nodes in order to
accomplish this.

There are no
comparisons and there
IS NO restructuring.

BO.1
N=1,,=1, 22=4 21=2 | 20=1
+ BQ.2 %
N=2,,=10, 22=4 21=2 | 20=1
=BQ.3 %




Merge by adding the trees

* A merge of two queues can be viewed as
adding the two sets of trees together

> ...

> 1+1 =2,,=10, — both queues have a tree at
that position and so the sum has a double-sized
tree at the next higher position and nothing at
the current position

> ...
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Merge BQ.2 and BQ.2

There are two trees at
position 1. So attach the
tree with the larger root
as a child of the tree with
the smaller root, and put
the resulting tree in the
next higher position.

This Is an add with a
carry out.

It is accomplished with
one comparison and one
pointer change: O(1)

(@H)

BQ.2
NE2,,=10,| 22=4 | 21=2 | 20=1
+ BQ.2
NE2,,=10,| 22=4 | 21=2 | 20=1
=BQ4 | (D (®
N=4,,=100, 22=4 21=2 | 20=1




Merge by adding the trees

* A merge of two queues can be viewed as
adding the two sets of trees together

> ...

> 1+1 + carry = 3;;, = 11, — both queues have a
tree at that position and there is a carry from the
previous position and so the sum has a double-
sized tree at the next higher position and a tree
at the current position
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Merge BQ.3 and BQ.3
Part 1 - Form the carry.

There are two trees at
position 0. So attach the
tree with the larger root
as a child of the tree with
the smaller root, and put
the resulting tree in the
next higher position.

This Is an add with a
carry out.

()

BQ.3
N=3,,=11,| 22=4 | 21=2 | 20=1
+ BQ.3
N=3,,=11,| 22=4 | 21=2 | 20=1
N=2,,=10,| 22=4 | 21=2 | 20=1




(@H)

carry +BQ.3
N:210:102 22=4 21=2 20=1 N:310:112 22=4 21=2 20=1
Merge BQ.3 and BQ.3
Part 2 - Add the existing +BQ.3 &)
values and the carry.

Put the carry in the current Wootll,] 2%=4 | 2=2| =1
position. Attach the existing
tree with the larger root as a 0 a

child of the existing treewith =g | (4)(3)| (&)
the smaller root, and put the

result tree in the next higher G

position (ie, It Is the carry out). | N=6,,=110, | 22=4 | 21=2 | 20=1




High Speed Merging

* Notice that although there are lots of nodes
Involved, the actual merge operation only
touches the root nodes of a few trees

« Very fast compared to inserting the contents
of an entire heap as we would have to do
with binary heaps which would be ©(N)

e There are log N trees in each Binomial
Queue and so the merge i1s O(log N)
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Binomial Queues: Insert

 How would you Insert a new item into the
queue?

> Create a single node queue B, with the
new item and merge with existing queue

> Again, O(log N) time
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Binomial Queues: DeleteMin

e Steps:
> Find tree B, with the smallest root O(log N)
> Remove B, from the queue O(1)

> Remove root of B, (return this value) O(1)

* You now have a new queue made up of the forest By,
B, ..., B,

> Merge this new queue with remainder of the
original (from step 2) O(log N)
e Total time = O(log N)
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Implementation

e Merge adds one binomial tree as child to
another and DeleteMin requires fast access to
all subtrees of root

> Need pointer-based implementation

> Use First-Child/Next-Sibling representation
of trees

> Use array of pointers to root nodes of
binomial trees
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Why Binomial?

(QJ -__d B4 B3 Bz Bl BO
k (d —k)k! Q
tree depth d 4 3 2 1 0
nodes at depth k 1,4,6,4,1 1,3,3,1 1,2,1 1,1 1
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