Binomial Queues

CSE 373 - Data Structures
April 29, 2002

Readings and References

e Reading

> Section 6.8, Data Structures and Algorithm Analysis in C, Weiss

e Other References

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues

Merging heaps

* Binary Heap Is a special purpose hot rod
> FIndMin, DeleteMin and Insert only
> does not support fast merges of two heaps

* For some applications, the items arrive In
prioritized clumps, rather than individually

* |s there somewhere In the heap design that
we can give up a little performance so that
we can gain faster merge capability?

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues

Binomial Queues

 Binomial Queues are designed to be merged
quickly with one another

 Using pointer-based design we can merge
large numbers of nodes at once by simply
pruning and grafting tree structures

* More overhead than Binary Heap, but the
flexibility I1s needed for Improved merging
speed

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 4

Worst Case Run Times

29-Apr-02

Binary Heap Binomial Queue
Insert ©(log N) ©(log N)
FindMin o)

DeleteMin ©(log N) ©(log N)

Merge O(N)

CSE 373 - Data Structures - 11 - Binomial Queues

Binomial Queues

* Binomial queues give up ©(1) FIndMin
performance In order to provide O(log N)
merge performance

* A binomial queue is a collection (or forest) of
heap-ordered trees

> Not just one tree, but a collection of trees
> each tree has a defined structure and capacity
> each tree has the familiar heap-order property

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 6

Binomial Queue with 5 Trees

B, B, B, B, (BS
depth 4 3 2 1 0
number of elements 24=16 2°=8 2°=4 21=2 | 20=1
29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 7

Structure Property

e Each tree contains two
coples of the previous tree

> the second copy Is attached at
the root of the first copy

e The number of nodes In a
tree of depth d is exactly 2¢

29-Apr-02

BZ Bl BO
depth 2 1 0
number of elements 22=4 21=2 | 20=1

CSE 373 - Data Structures - 11 - Binomial Queues

Powers of 2

« Any number N can be represented in base 2

> A base 2 value identifies the powers of 2 that
are to be included

® <& & o
IIIIIIIIIII
RS Hex,s | Decimal
11 3 3
1.0 0 4 4
141011 5 5

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 9

Numbers of nodes

« Any number of entries In the binomial queue
can be stored In a forest of binomial trees

» Each tree holds the number of nodes
appropriate to its depth, ie 29 nodes

* So the structure of a forest of binomial trees
can be characterized with a single binary
number

> 100, - 1-22+ 0:21+ 0-2° = 4 nodes

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 10

Structure Examples

5

N=2,,=10, 22=4 21=2 20=1
N:310:112 22=4 21=2 20=1

N=4,,=100,| 22=4 | 21=2 | 20=1

What Is a merge?

e There Is a direct correlation between
> the number of nodes In the tree
> the representation of that number In base 2
> and the actual structure of the tree

* \When we merge two queues, the number of
nodes in the new queue Is the sum of N,+N,

* \We can use that fact to help see how fast
merges can be accomplished

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 12

Merge by adding the trees

* A merge of two queues can be viewed as
adding the two sets of trees together

> 0+0 =0 - neither queue has a tree at that
position and so neither does the sum

> 0+1 =1 - only one of the queues has a tree at
that position, and so it is copied into the sum

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 13

Merge BQ.1 and BQ.2

Note that nothing was
done with any of the
nodes in order to
accomplish this.

There are no
comparisons and there
IS NO restructuring.

BO.1
N=1,,=1, 22=4 21=2 | 20=1
+ BQ.2 %
N=2,,=10, 22=4 21=2 | 20=1
=BQ.3 %

Merge by adding the trees

* A merge of two queues can be viewed as
adding the two sets of trees together

> ...

> 1+1 =2,,=10, — both queues have a tree at
that position and so the sum has a double-sized
tree at the next higher position and nothing at
the current position

> ...

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 15

Merge BQ.2 and BQ.2

There are two trees at
position 1. So attach the
tree with the larger root
as a child of the tree with
the smaller root, and put
the resulting tree in the
next higher position.

This Is an add with a
carry out.

It is accomplished with
one comparison and one
pointer change: O(1)

(@H)

BQ.2
NE2,,=10,| 22=4 | 21=2 | 20=1
+ BQ.2
NE2,,=10,| 22=4 | 21=2 | 20=1
=BQ4 | (D (®
N=4,,=100, 22=4 21=2 | 20=1

Merge by adding the trees

* A merge of two queues can be viewed as
adding the two sets of trees together

> ...

> 1+1 + carry = 3;;, = 11, — both queues have a
tree at that position and there is a carry from the
previous position and so the sum has a double-
sized tree at the next higher position and a tree
at the current position

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 17

Merge BQ.3 and BQ.3
Part 1 - Form the carry.

There are two trees at
position 0. So attach the
tree with the larger root
as a child of the tree with
the smaller root, and put
the resulting tree in the
next higher position.

This Is an add with a
carry out.

()

BQ.3
N=3,,=11,| 22=4 | 21=2 | 20=1
+ BQ.3
N=3,,=11,| 22=4 | 21=2 | 20=1
N=2,,=10,| 22=4 | 21=2 | 20=1

(@H)

carry +BQ.3
N:210:102 22=4 21=2 20=1 N:310:112 22=4 21=2 20=1
Merge BQ.3 and BQ.3
Part 2 - Add the existing +BQ.3 &)
values and the carry.

Put the carry in the current Wootll,] 2%=4 | 2=2| =1
position. Attach the existing
tree with the larger root as a 0 a

child of the existing treewith =g | (4)(3)| (&)
the smaller root, and put the

result tree in the next higher G

position (ie, It Is the carry out). | N=6,,=110, | 22=4 | 21=2 | 20=1

High Speed Merging

* Notice that although there are lots of nodes
Involved, the actual merge operation only
touches the root nodes of a few trees

« Very fast compared to inserting the contents
of an entire heap as we would have to do
with binary heaps which would be ©(N)

e There are log N trees in each Binomial
Queue and so the merge i1s O(log N)

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 20

Binomial Queues: Insert

 How would you Insert a new item into the
queue?

> Create a single node queue B, with the
new item and merge with existing queue

> Again, O(log N) time

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 21

Binomial Queues: DeleteMin

e Steps:
> Find tree B, with the smallest root O(log N)
> Remove B, from the queue O(1)

> Remove root of B, (return this value) O(1)

* You now have a new queue made up of the forest By,
B, ..., B,

> Merge this new queue with remainder of the
original (from step 2) O(log N)
e Total time = O(log N)

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 22

Implementation

e Merge adds one binomial tree as child to
another and DeleteMin requires fast access to
all subtrees of root

> Need pointer-based implementation

> Use First-Child/Next-Sibling representation
of trees

> Use array of pointers to root nodes of
binomial trees

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 23

Why Binomial?

(QJ -__d B4 B3 Bz Bl BO
k (d —k)k! Q
tree depth d 4 3 2 1 0
nodes at depth k 1,4,6,4,1 1,3,3,1 1,2,1 1,1 1
29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 24

