Binomial Queues

CSE 373 - Data Structures April 29, 2002

Readings and References

• Reading

> Section 6.8, Data Structures and Algorithm Analysis in C, Weiss

• Other References

29-Apr-02

CSE 373 - Data Structures - 11 - Binomial Queues

Merging heaps

- Binary Heap is a special purpose hot rod
 - > FindMin, DeleteMin and Insert only
 - > does not support fast merges of two heaps
- For some applications, the items arrive in prioritized clumps, rather than individually
- Is there somewhere in the heap design that we can give up a little performance so that we can gain faster merge capability?

Binomial Queues

- Binomial Queues are designed to be merged quickly with one another
- Using pointer-based design we can merge large numbers of nodes at once by simply pruning and grafting tree structures
- More overhead than Binary Heap, but the flexibility is needed for improved merging speed

29-Apr-02

4

2

3

Worst Case Run Times

Binomial Queues

- Binomial queues give up Θ(1) FindMin performance in order to provide O(log N) merge performance
- A **binomial queue** is a collection (or *forest*) of heap-ordered trees
 - > Not just one tree, but a collection of trees
 - > each tree has a defined structure and capacity
 - > each tree has the familiar heap-order property
 - 29-Apr-02
- CSE 373 Data Structures 11 Binomial Queues

6

Binomial Queue with 5 Trees

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues

7

Structure Property

- Each tree contains two copies of the previous tree
 - the second copy is attached at the root of the first copy
- The number of nodes in a tree of depth *d* is exactly 2^{*d*}

depth

number of elements

0

1

 $2^1 = 2$

2

 $2^2 = 4$

 B_0

Powers of 2

- Any number N can be represented in base 2
 - > A base 2 value identifies the powers of 2 that are to be included

8 10	4 10	2 10	1 ₁₀		
Ш			Ш		
5 3	<mark>5</mark> 3	<mark>7</mark> 1	8	Hex ₁₆	Decimal_{10}
		1	1	3	3
	1	0	0	4	4
	1	0	1	5	5

29-Apr-02

CSE 373 - Data Structures - 11 - Binomial Queues

Numbers of nodes

- Any number of entries in the binomial queue can be stored in a forest of binomial trees
- Each tree holds the number of nodes appropriate to its depth, ie 2^d nodes
- So the structure of a forest of binomial trees can be characterized with a single binary number

 $\rightarrow 100_2 \rightarrow 1 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0 = 4$ nodes

29-Apr-02

CSE 373 - Data Structures - 11 - Binomial Queues

10

Structure Examples

N=2 ₁₀ =10 ₂	$2^2 = 4$	$2^1 = 2$	20 = 1		N=410=1002	$2^2 = 4$	
[]			
N=310=112	$2^2 = 4$	$2^1 = 2$	$2^0 = 1$]	N=510=1012	$2^2 = 4$	

9

What is a merge?

- There is a direct correlation between
 - > the number of nodes in the tree
 - > the representation of that number in base 2
 - \rightarrow and the actual structure of the tree
- When we merge two queues, the number of nodes in the new queue is the sum of $N_1 + N_2$
- We can use that fact to help see how fast merges can be accomplished

29-Apr-02

Merge by adding the trees

- A merge of two queues can be viewed as adding the two sets of trees together
 - > $0+0=0 \rightarrow$ neither queue has a tree at that position and so neither does the sum
 - > $0+1 = 1 \rightarrow$ only one of the queues has a tree at that position, and so it is copied into the sum
 - › ...

29-Apr-02	CSE 3/3 - Data Structures - 11 - Binomial Queues	13

Merge by adding the trees

- A merge of two queues can be viewed as adding the two sets of trees together
 - › ...
 - > $1+1 = 2_{10} = 10_2 \rightarrow$ both queues have a tree at that position and so the sum has a double-sized tree at the next higher position and nothing at the current position

› ...

29-Apr-02

15

BQ.1 Merge BQ.1 and BQ.2 $2^0 = 1$ $N=1_{10}=1_2$ $2^2 = 4$ $2^1 = 2$ Note that nothing was done with any of the + BQ.2 nodes in order to accomplish this. $2^1 = 2$ $2^0 = 1$ $N=2_{10}=10_{2}$ $2^2 = 4$ There are no comparisons and there is no restructuring. = BQ.3 $N=3_{10}=11_{2}$ $2^2 = 4$ $2^1 = 2$ $2^0 = 1$

Merge BQ.2 and BQ.2

There are two trees at position 1. So attach the tree with the larger root as a child of the tree with the smaller root, and put the resulting tree in the next higher position.

This is an add with a carry out.

It is accomplished with one comparison and one pointer change: O(1)

Merge by adding the trees

- A merge of two queues can be viewed as adding the two sets of trees together
 - › ...

29-Apr-02

> $1+1 + carry = 3_{10} = 11_2 \rightarrow both$ queues have a tree at that position and there is a carry from the previous position and so the sum has a doublesized tree at the next higher position and a tree at the current position

CSE 373 - Data Structures - 11 - Binomial Queues

17

Merge BQ.3 and BQ.3

Part 1 - Form the carry.

There are two trees at position 0. So attach the tree with the larger root as a child of the tree with the smaller root, and put the resulting tree in the next higher position.

This is an add with a carry out.

High Speed Merging

- Notice that although there are lots of nodes involved, the actual merge operation only touches the root nodes of a few trees
- Very fast compared to inserting the contents of an entire heap as we would have to do with binary heaps which would be Θ(N)
- There are log N trees in each Binomial Queue and so the merge is O(log N)

29-Apr-02 CSE 373

Binomial Queues: Insert

- How would you insert a new item into the queue?
 - Create a single node queue B₀ with the new item and merge with existing queue

CSE 373 - Data Structures - 11 - Binomial Queues

> Again, O(log N) time

Implementation

- Merge adds one binomial tree as child to another and DeleteMin requires fast access to all subtrees of root
 - > Need pointer-based implementation
 - > Use First-Child/Next-Sibling representation of trees
 - > Use array of pointers to root nodes of binomial trees

Binomial Queues: DeleteMin

• Steps:

- > Find tree B_k with the smallest root $O(\log N)$
- > Remove B_k from the queue O(1)
- > Remove root of B_k (return this value) O(1)
 - You now have a new queue made up of the forest B_0 , B_1 , ..., B_{k-1} .
- Merge this new queue with remainder of the original (from step 2) O(log N)
- Total time = O(log N)
 - 29-Apr-02

29-Apr-02

CSE 373 - Data Structures - 11 - Binomial Queues

21

Why Binomial?

29-Apr-02

23

22