
Binomial Queues

CSE 373 - Data Structures
April 29, 2002

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 2

Readings and References

• Reading
› Section 6.8, Data Structures and Algorithm Analysis in C, Weiss

• Other References

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 3

Merging heaps

• Binary Heap is a special purpose hot rod
› FindMin, DeleteMin and Insert only
› does not support fast merges of two heaps

• For some applications, the items arrive in
prioritized clumps, rather than individually

• Is there somewhere in the heap design that
we can give up a little performance so that
we can gain faster merge capability?

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 4

Binomial Queues

• Binomial Queues are designed to be merged
quickly with one another

• Using pointer-based design we can merge
large numbers of nodes at once by simply
pruning and grafting tree structures

• More overhead than Binary Heap, but the
flexibility is needed for improved merging
speed

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 5

Worst Case Run Times

Insert

FindMin

DeleteMin

Merge

Θ(log N)

Θ(1)

Θ(N)

Θ(log N)

Binary Heap

Θ(log N)

O(log N)

O(log N)

Θ(log N)

Binomial Queue

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 6

Binomial Queues

• Binomial queues give up Θ(1) FindMin
performance in order to provide O(log N)
merge performance

• A binomial queue is a collection (or forest) of
heap-ordered trees
› Not just one tree, but a collection of trees
› each tree has a defined structure and capacity
› each tree has the familiar heap-order property

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 7

Binomial Queue with 5 Trees

B0B1B2B3B4

depth

number of elements

4

24 = 16

3

23 = 8

2

22 = 4

1

21 = 2

0

20 = 1

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 8

Structure Property

• Each tree contains two
copies of the previous tree
› the second copy is attached at

the root of the first copy
• The number of nodes in a

tree of depth d is exactly 2d

B0B1B2

depth

number of elements

2

22 = 4

1

21 = 2

0

20 = 1

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 9

Powers of 2
• Any number N can be represented in base 2

› A base 2 value identifies the powers of 2 that
are to be included

2
0
=

1
1
0

2
1
=

2
1
0

2
2
=

4
1
0

2
3
=

8
1
0

Hex16 Decimal10

1 1 3 3

1 0 0 4 4

1 0 1 5 5

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 10

Numbers of nodes

• Any number of entries in the binomial queue
can be stored in a forest of binomial trees

• Each tree holds the number of nodes
appropriate to its depth, ie 2d nodes

• So the structure of a forest of binomial trees
can be characterized with a single binary
number
› 1002 → 1·22 + 0·21 + 0·20 = 4 nodes

Structure Examples

N=210=102 21 = 2

21 = 2 20 = 1 22 = 4 21 = 2 20 = 1

22 = 4

N=310=112

N=410=1002

N=510=1012

22 = 4

22 = 4

20 = 1 20 = 121 = 2

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 12

What is a merge?

• There is a direct correlation between
› the number of nodes in the tree
› the representation of that number in base 2
› and the actual structure of the tree

• When we merge two queues, the number of
nodes in the new queue is the sum of N1+N2

• We can use that fact to help see how fast
merges can be accomplished

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 13

Merge by adding the trees

• A merge of two queues can be viewed as
adding the two sets of trees together
› 0+0 = 0 → neither queue has a tree at that

position and so neither does the sum
› 0+1 = 1 → only one of the queues has a tree at

that position, and so it is copied into the sum
› ...

N=210=102 21 = 2

21 = 2 20 = 1N=310=112

22 = 4

22 = 4

20 = 1

N=110=12 21 = 222 = 4 20 = 1
Merge BQ.1 and BQ.2

Note that nothing was
done with any of the
nodes in order to
accomplish this.

There are no
comparisons and there
is no restructuring.

BQ.1

+ BQ.2

= BQ.3

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 15

Merge by adding the trees

• A merge of two queues can be viewed as
adding the two sets of trees together
› ...
› 1+1 = 210 = 102 → both queues have a tree at

that position and so the sum has a double-sized
tree at the next higher position and nothing at
the current position

› ...

4

6

N=210=102 21 = 2

21 = 2 20 = 1N=410=1002

22 = 4

22 = 4

20 = 1

N=210=102 21 = 222 = 4 20 = 1

Merge BQ.2 and BQ.2

There are two trees at
position 1. So attach the
tree with the larger root
as a child of the tree with
the smaller root, and put
the resulting tree in the
next higher position.

This is an add with a
carry out.

It is accomplished with
one comparison and one
pointer change: O(1)

BQ.2

+ BQ.2

= BQ.4

1

3

1

34

6

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 17

Merge by adding the trees

• A merge of two queues can be viewed as
adding the two sets of trees together
› ...
› 1+1 + carry = 310 = 112 → both queues have a

tree at that position and there is a carry from the
previous position and so the sum has a double-
sized tree at the next higher position and a tree
at the current position

4

6

N=310=112 21 = 2

21 = 2 20 = 1N=210=102

22 = 4

22 = 4

20 = 1

N=310=112 21 = 222 = 4 20 = 1

Merge BQ.3 and BQ.3

Part 1 - Form the carry.

There are two trees at
position 0. So attach the
tree with the larger root
as a child of the tree with
the smaller root, and put
the resulting tree in the
next higher position.

This is an add with a
carry out.

BQ.3

+ BQ.3

= carry

1

3

7

8

7

8

4

6

N=310=112 21 = 2

21 = 2 20 = 1N=610=1102

22 = 4

22 = 4

20 = 1

N=310=112 21 = 222 = 4 20 = 1

Merge BQ.3 and BQ.3

Part 2 - Add the existing
values and the carry.

Put the carry in the current
position. Attach the existing
tree with the larger root as a
child of the existing tree with
the smaller root, and put the
result tree in the next higher
position (ie, it is the carry out).

+ BQ.3

+ BQ.3

= BQ.6

1

3

7

8

7

8

21 = 2 20 = 1N=210=102 22 = 4

carry

7

8

1

34

6

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 20

High Speed Merging

• Notice that although there are lots of nodes
involved, the actual merge operation only
touches the root nodes of a few trees

• Very fast compared to inserting the contents
of an entire heap as we would have to do
with binary heaps which would be Θ(N)

• There are log N trees in each Binomial
Queue and so the merge is O(log N)

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 21

Binomial Queues: Insert

• How would you insert a new item into the
queue?
› Create a single node queue B0 with the

new item and merge with existing queue
› Again, O(log N) time

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 22

Binomial Queues: DeleteMin
• Steps:

› Find tree Bk with the smallest root O(log N)
› Remove Bk from the queue O(1)
› Remove root of Bk (return this value) O(1)

• You now have a new queue made up of the forest B0,
B1, …, Bk-1.

› Merge this new queue with remainder of the
original (from step 2) O(log N)

• Total time = O(log N)

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 23

Implementation
• Merge adds one binomial tree as child to

another and DeleteMin requires fast access to
all subtrees of root
› Need pointer-based implementation
› Use First-Child/Next-Sibling representation

of trees
› Use array of pointers to root nodes of

binomial trees

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 24

Why Binomial?

B0B1B2B3B4

tree depth d

nodes at depth k

4

1, 4, 6, 4, 1

3

1, 3, 3, 1

2

1, 2, 1

1

1, 1

0

1

!)!(
!

kkd
d

k
d

−
=









