Binomial Queues

CSE 373 - Data Structures
April 29, 2002

Readings and References

» Reading

> Section 6.8, Data Structures and Algorithm Analysis in C, Weiss

e Other References

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 2

Merging heaps

Binomial Queues

» Binary Heap is a special purpose hot rod
> FindMin, DeleteMin and Insert only
> does not support fast merges of two heaps

» For some applications, the items arrive in
prioritized clumps, rather than individually

* Is there somewhere in the heap design that
we can give up a little performance so that
we can gain faster merge capability?

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues

» Binomial Queues are designed to be merged
quickly with one another

 Using pointer-based design we can merge
large numbers of nodes at once by simply
pruning and grafting tree structures

» More overhead than Binary Heap, but the
flexibility is needed for improved merging
speed

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 4




Worst Case Run Times

Binary Heap Binomial Queue
Insert ©(log N) O(log N)
FindMin
DeleteMin O(log N) O(log N)

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues

Binomial Queues

Binomial queues give up ©(1) FindMin
performance in order to provide O(log N)
merge performance

» A binomial queue is a collection (or forest) of

heap-ordered trees

> Not just one tree, but a collection of trees

> each tree has a defined structure and capacity
> each tree has the familiar heap-order property

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 6

Binomial Queue with 5 Trees

B, B, B, | B 8
depth 4 3 2 1 0
number of elements 24=16 23=8 22=4 21=2 | 20=1

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues

Structure Property

Each tree contains two B,

copies of the previous tree O

> the second copy is attached at
the root of the first copy

The number of nodes in a

tree of depth d is exactly 2¢

o
=

o
o

depth 2 1 0

number of elements 22=4 21=2 | 20=1

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 8




Powers of 2

» Any number N can be represented in base 2

> A base 2 value identifies the powers of 2 that
are to be included

810

3 S S
<+ N A
1" I 1l I
NERNERYE R Hexys | Decimal 4o
1411 3 3
1 0:i0 4 4
1 01 5 5
29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 9

Numbers of nodes

» Any number of entries in the binomial queue
can be stored in a forest of binomial trees

o Each tree holds the number of nodes
appropriate to its depth, ie 29 nodes
» So the structure of a forest of binomial trees
can be characterized with a single binary
number
> 100, — 1.22+ 0:21+ 0-2° = 4 nodes

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 10

Structure Examples

N=2,,=10, 22=4 21=2 | 20=1 ‘ N=4,,=100, 22=4 21=92 | 20=1
N=31p=11,| 22=4 21=2 | 20=1 N=5,,=101,| 22=4 21=2 | 20=1

What is a merge?

» There is a direct correlation between
> the number of nodes in the tree
> the representation of that number in base 2
> and the actual structure of the tree
* When we merge two queues, the number of
nodes in the new queue is the sum of N;+N,
» We can use that fact to help see how fast
merges can be accomplished

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 12




. BQ.1
Merge by adding the trees
Merge BQ.1 and BQ.2 (N1,1, | 2224 | 2122 | =1
» A merge of two queues can be viewed as :
. Note that nothing was
adding the two sets of trees together done with any of the 8
> 0+0 =0 - neither queue has a tree at that nodes in order to +BQ.2
position and so neither does the sum accomplish this.
> 0+1 =1 - only one of the queues has a tree at There are no N2n10,| 224 [20=2 | 221
that position, and so it is copied into the sum comparisons and there O
N Is no restructuring. _BO3
29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 13 ‘N=31°=112 =4 | 21=2 | 2°=1
Merge BQ.2 and BQ.2 g
. BQ.2
Merge by adding the trees There are two trees at
position 1. So attach the
tree with the larger root (N2,710,| 224 | 21=2 | 2=1
» A merge of two queues can be viewed as as a child of the tree with
adding the two sets of trees together the smaller root, and put @
the resulting tree in the +BO.2 e
> .. next higher position. Q
> 1+1 =2,, =10, - both queues have a tree at This dd with
that position and so the sum has a double-sized Car'fy'ij: add with a [N2e10,| 24 [21=2 [ 20=1
tree at the next higher position and nothing at ' (D
the current position It is accomplished with -Bo4 | @B
N one comparison and one '
pointer change: O(1) G
| N-ay=100, | 22=4 | 21=2 | 20=1

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 15




Merge by adding the trees

» A merge of two queues can be viewed as
adding the two sets of trees together

> ..

> 1+1 + carry = 3,;, = 11, — both queues have a
tree at that position and there is a carry from the
previous position and so the sum has a double-
sized tree at the next higher position and a tree

at the current position

Merge BQ.3 and BQ.3

g
@6
@

Part 1 - Form the carry.

‘ N=3,0=11,| 22=4 21=2 | 20=1

There are two trees at
position 0. So attach the
tree with the larger root
as a child of the tree with ~ * BQ.3
the smaller root, and put

the resulting tree in the (N3, =11, | 2224 | 21=
next higher position.

This is an add with a - cary

carry out.

20
®

N

20=1

‘ N=2,0=10, 22=4 21=2 | 20=1

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 17
: +BQ.3 % - -
carry ® ngh Speed Merg|ng
[Ne2,0710, | 2224 [ 20=2 | 20=1 | [Ne3ym11,| 2224 [ 21=2 | 20=1 ]
» Notice that although there are lots of nodes

Merge BQ.3and BQ-3 involved, the actual merge operation only
Part 2 - Add the existing +BQ3 (&) touches the root nodes of a few trees

values and the carry. . .

Y |  Very fast compared to inserting the contents
. N=3,0=11, 22=4 21=2 | 20=1 .

Put_tthe Ca/&?t/ Inhtthhe Cur_retr_lt of an entire heap as we would have to do
positon. ac € existing . . .

tree with the larger root as a eg with binary heaps which would be ©(N)
child of the existing tree with = BQO.6 ; i ;

the smaller root, and put the Q e There are log N trees in gach Binomial

result tree in the next higher (&) Queue and so the merge is O(log N)

position (ie, it is the carry out). ‘ N=61,=110, | 22=4 | 2t=2 | 2°=1 29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 20




Binomial Queues: Insert

* How would you insert a new item into the
queue?

> Create a single node queue B, with the
new item and merge with existing queue

> Again, O(log N) time

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 21

Binomial Queues: DeleteMin

o Steps:
> Find tree B, with the smallest root O(log N)
> Remove B, from the queue O(1)

> Remove root of B, (return this value) O(1)

* You now have a new queue made up of the forest B,
Bl’ ey Bk_l-

> Merge this new queue with remainder of the
original (from step 2) O(log N)
o Total time = O(log N)

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 22

Implementation

» Merge adds one binomial tree as child to
another and DeleteMin requires fast access to
all subtrees of root

> Need pointer-based implementation

> Use First-Child/Next-Sibling representation
of trees

> Use array of pointers to root nodes of
binomial trees

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 23

Why Binomial?

(%) ) m B4 BS Bz

o
=

o
o

tree depth d 4 3 2 1 0

nodes at depth k 1,4,6,4,1 1,331 1,21 1,1

29-Apr-02 CSE 373 - Data Structures - 11 - Binomial Queues 24




