Binary Heaps

CSE 373 - Data Structures April 26, 2002

Readings and References

- Reading
 - Sections 6.1-6.4, *Data Structures and Algorithm Analysis in C*, Weiss
- Other References

A New Problem...

- Application: Find the smallest (or highest priority) item quickly
 - Operating system needs to schedule jobs according to priority
 - Doctors in ER take patients according to severity of injuries
 - Event simulation (bank customers arriving and departing, ordered according to when the event happened)

Use Lists or Binary Search Tree?

- We want an ADT that can efficiently perform:
 - > FindMin (and DeleteMin)
 - > Insert
- What if we use...
 - > Lists: If sorted, what is the run time for Insert and FindMin? Unsorted?
 - > Binary Search Trees: What is the run time for Insert and FindMin?

Less flexibility \rightarrow More speed

- Lists
 - > If sorted: FindMin is O(1) but Insert is O(N)
 - > If not sorted: Insert is O(1) but FindMin is O(N)
- Binary Search Trees (BSTs)
 - > Insert is O(log N) and FindMin is O(log N)
- BSTs look good but...
 - > BSTs are efficient for all Finds, not just FindMin
 - > We only need FindMin

Better than a speeding BST

- We can do better than Binary Search Trees
 - Very limited requirements: Insert, FindMin, DeleteMin
 - > FindMin is O(1)
 - > Insert is O(log N)
 - > DeleteMin is O(log N)

Binary Heaps

- A binary heap is a binary tree that is:
 - Complete: the tree is completely filled except possibly the bottom level, which is filled from left to right
 - > Satisfies the heap order property
 - every node is less than or equal to its children
 - or every node is greater than or equal to its children
- The root node is always the smallest node
 - > or the largest, depending on the heap order

Heap order property

- A heap provides limited ordering information
- Each *path* is sorted, but the subtrees are not sorted relative to each other
 - > A binary heap is NOT a binary search tree

Binary Heap vs Binary Search Tree

Parent is less than both left and right children

Parent is greater than left child, less than right child

26-Apr-02

CSE 373 - Data Structures - 11 - Binary Heaps

Structure property

- A binary heap is a complete tree
 - All nodes are in use except for possibly the right end of the bottom row
- Pointers from node to node?
 - > allow arbitrary connect and disconnect at any node
 - > but we don't need this flexibility since the tree is always complete and we don't need to do a lot of reorganizing to meet a tree order property

Examples

Array Implementation of Heaps

- Root node = A[1]
- Children of A[i] = A[2i], A[2i + 1]
- Keep track of current size N (number of nodes)

26-Apr-02

CSE 373 - Data Structures - 11 - Binary Heaps

FindMin and DeleteMin

- FindMin: Easy!
 - > Return root value A[1]
 - > Run time = ?

- DeleteMin:
 - Delete (and return) value at root node

DeleteMin

• Delete (and return) value at root node

Maintain the Structure Property

- We now have a "Hole" at the root
 - > Need to fill the hole with another value
- When we get done, the tree will have one less node and must still be complete

Maintain the Heap Property

- The last value has lost its node
 > we need to find a new place for it
- We can do a simple insertion sort operation to find the correct place for it in the tree

DeleteMin: Percolate Down

- Keep comparing with children A[2i] and A[2i + 1]
- Copy smaller child up and go down one level
- Done if both children are \geq item or reached a leaf node
- What is the run time?

DeleteMin: Run Time Analysis

- Run time is O(depth of heap)
- A heap is a complete binary tree
- Depth of a complete binary tree of N nodes?
 depth = \log(N) \rightarrow = floor(log(N))
- Run time of DeleteMin is O(log N)

Insert

- Add a value to the tree
- Structure and heap order properties must still be correct when we are done

Maintain the Structure Property

- The only valid place for a new node in a complete tree is at the end of the array
- We need to decide on the correct value for the new node, and adjust the heap accordingly

Maintain the Heap Property

- The new value goes where?
- We can do a simple insertion sort operation to find the correct place for it in the tree

Insert: Percolate Up

- Start at last node and keep comparing with parent A[i/2]
- If parent larger, copy parent down and go up one level
- Done if parent \leq item or reached top node A[1]
- Run time?

CSE 373 - Data Structures - 11 - Binary Heaps

Insert: Done

• Run time?

CSE 373 - Data Structures - 11 - Binary Heaps

Sentinel Values

- Every iteration of Insert needs to test:
 - > if it has reached the top node A[1]
 - > if parent \leq item
- Can avoid first test if A[0] contains a very large negative value
 - > sentinel $-\infty <$ item, for all items
- Second test alone always stops at top

Summary of Heap ADT Analysis

- Space needed for heap of N nodes: O(MaxN)
 - > An array of size MaxN, plus a variable to store the size N, plus an array slot to hold the sentinel
- Time
 - > FindMin: O(1)
 - > DeleteMin and Insert: O(log N)
 - > BuildHeap from N inputs
 - N Insert operations = O(N log N)
 - Treat input array as a heap and fix it using percolate down = O(N)

26-Apr-02

CSE 373 - Data Structures - 11 - Binary Heaps

- Find(X, H): Find the element X in heap H of N elements
 - > What is the running time? O(N)
- FindMax(H): Find the maximum element in H

> What is the running time? O(N)

• We sacrificed performance of these operations in order to get O(1) performance for FindMin

- DecreaseKey(P,Δ,H): Decrease the key value of node at position P by a positive amount Δ. eg, to increase priority
 - > First, subtract Δ from current value at P
 - > Heap order property may be violated
 - > so percolate up to fix
 - > Running Time: O(log N)

- IncreaseKey(P,Δ,H): Increase the key value of node at position P by a positive amount Δ. eg, to decrease priority
 - > First, add Δ to current value at P
 - > Heap order property may be violated
 - so percolate down to fix
 - > Running Time: O(log N)

- Delete(P,H): E.g. Delete a job waiting in queue that has been preemptively terminated by user
 - > Use DecreaseKey(P,∞,H) followed by DeleteMin
 - Be careful about your sentinel value and overflow
 - > Running Time: O(log N)

- Merge(H1,H2): Merge two heaps H1 and H2 of size O(N). H1 and H2 are stored in two arrays.
 - > Can do O(N) Insert operations: O(N log N) time
 - Better: Copy H2 at the end of H1 and use
 BuildHeap. Running Time: O(N)
- Merges in O(log N) coming soon to a lecture hall near you ...