
Binary Heaps

CSE 373 - Data Structures
April 26, 2002

26-Apr-02 CSE 373 - Data Structures - 11 - Binary Heaps 2

Readings and References

• Reading
› Sections 6.1-6.4, Data Structures and Algorithm Analysis in C,

Weiss

• Other References

26-Apr-02 CSE 373 - Data Structures - 11 - Binary Heaps 3

A New Problem…

• Application: Find the smallest (or highest
priority) item quickly
› Operating system needs to schedule jobs

according to priority
› Doctors in ER take patients according to

severity of injuries
› Event simulation (bank customers arriving and

departing, ordered according to when the event
happened)

26-Apr-02 CSE 373 - Data Structures - 11 - Binary Heaps 4

Use Lists or Binary Search Tree?

• We want an ADT that can efficiently
perform:
› FindMin (and DeleteMin)
› Insert

• What if we use…
› Lists: If sorted, what is the run time for Insert

and FindMin? Unsorted?
› Binary Search Trees: What is the run time for

Insert and FindMin?

26-Apr-02 CSE 373 - Data Structures - 11 - Binary Heaps 5

Less flexibility → More speed

• Lists
› If sorted: FindMin is O(1) but Insert is O(N)
› If not sorted: Insert is O(1) but FindMin is O(N)

• Binary Search Trees (BSTs)
› Insert is O(log N) and FindMin is O(log N)

• BSTs look good but…
› BSTs are efficient for all Finds, not just FindMin
› We only need FindMin

26-Apr-02 CSE 373 - Data Structures - 11 - Binary Heaps 6

Better than a speeding BST

• We can do better than Binary Search Trees
› Very limited requirements: Insert, FindMin,

DeleteMin
› FindMin is O(1)
› Insert is O(log N)
› DeleteMin is O(log N)

26-Apr-02 CSE 373 - Data Structures - 11 - Binary Heaps 7

Binary Heaps
• A binary heap is a binary tree that is:

› Complete: the tree is completely filled except
possibly the bottom level, which is filled from left
to right

› Satisfies the heap order property
• every node is less than or equal to its children
• or every node is greater than or equal to its children

• The root node is always the smallest node
› or the largest, depending on the heap order

26-Apr-02 CSE 373 - Data Structures - 11 - Binary Heaps 8

Heap order property
• A heap provides limited ordering information
• Each path is sorted, but the subtrees are not

sorted relative to each other
› A binary heap is NOT a binary search tree

2

4 6

7 5

-1

0 1

0

1

2 6

8 4 7
These are all valid binary heaps (minimum)

26-Apr-02 CSE 373 - Data Structures - 11 - Binary Heaps 9

Binary Heap vs Binary Search Tree

94

10 97

5 24

5

10 94

97 24

Binary Heap Binary Search Tree

Parent is greater than left child,
less than right child

Parent is less than both
left and right children

min value

min value

26-Apr-02 CSE 373 - Data Structures - 11 - Binary Heaps 10

Structure property

• A binary heap is a complete tree
› All nodes are in use except for possibly the right

end of the bottom row
• Pointers from node to node?

› allow arbitrary connect and disconnect at any node
› but we don't need this flexibility since the tree is

always complete and we don't need to do a lot of
reorganizing to meet a tree order property

26-Apr-02 CSE 373 - Data Structures - 11 - Binary Heaps 11

Examples

2

64

57

2

64

5

not complete

6

24

complete tree,
heap order is "max"

complete tree,
heap order is "min"

2

65

47

complete tree, but min
heap order is broken

26-Apr-02 CSE 373 - Data Structures - 11 - Binary Heaps 12

Array Implementation of Heaps

• Root node = A[1]
• Children of A[i] = A[2i], A[2i + 1]
• Keep track of current size N (number of

nodes)

N = 5

value

index

2

64

57

- 2 4 6 7 5
0 1 2 3 4 5 6 7

26-Apr-02 CSE 373 - Data Structures - 11 - Binary Heaps 13

FindMin and DeleteMin

• FindMin: Easy!
› Return root value A[1]
› Run time = ?

• DeleteMin:
› Delete (and return) value at

root node

2

34

9857

106911

26-Apr-02 CSE 373 - Data Structures - 11 - Binary Heaps 14

DeleteMin

34

9857

106911

• Delete (and return) value
at root node

26-Apr-02 CSE 373 - Data Structures - 11 - Binary Heaps 15

Maintain the Structure Property

34

9857

106911

• We now have a “Hole” at
the root
› Need to fill the hole with

another value
• When we get done, the tree

will have one less node and
must still be complete

34

9857

106911

26-Apr-02 CSE 373 - Data Structures - 11 - Binary Heaps 16

Maintain the Heap Property

• The last value has lost its node
› we need to find a new place for it

• We can do a simple insertion
sort operation to find the correct
place for it in the tree

34

9857

10

6911

26-Apr-02 CSE 373 - Data Structures - 11 - Binary Heaps 17

DeleteMin: Percolate Down

• Keep comparing with children A[2i] and A[2i + 1]
• Copy smaller child up and go down one level
• Done if both children are ≥ item or reached a leaf node
• What is the run time?

34

9857

10

6911

4

9857

106911

3

84

91057

6911

3?

?

26-Apr-02 CSE 373 - Data Structures - 11 - Binary Heaps 18

DeleteMin: Run Time Analysis

• Run time is O(depth of heap)
• A heap is a complete binary tree
• Depth of a complete binary tree of N nodes?

› depth = log(N) = floor(log(N))
• Run time of DeleteMin is O(log N)

26-Apr-02 CSE 373 - Data Structures - 11 - Binary Heaps 19

Insert

• Add a value to the tree
• Structure and heap order

properties must still be
correct when we are done

84

91057

6911

3

2

26-Apr-02 CSE 373 - Data Structures - 11 - Binary Heaps 20

Maintain the Structure Property

• The only valid place for a
new node in a complete tree
is at the end of the array

• We need to decide on the
correct value for the new
node, and adjust the heap
accordingly

84

91057

6911

3

2

26-Apr-02 CSE 373 - Data Structures - 11 - Binary Heaps 21

Maintain the Heap Property

• The new value goes where?
• We can do a simple insertion

sort operation to find the correct
place for it in the tree

2

84

91057

6911

3

26-Apr-02 CSE 373 - Data Structures - 11 - Binary Heaps 22

Insert: Percolate Up

2

84

91057

6911

3

• Start at last node and keep comparing with parent A[i/2]
• If parent larger, copy parent down and go up one level
• Done if parent ≤ item or reached top node A[1]
• Run time?

?

2

5

84

9107

6911

3?
2

5

8

91047

6911

3
?

26-Apr-02 CSE 373 - Data Structures - 11 - Binary Heaps 23

Insert: Done

5

83

91047

6911

2

• Run time?

26-Apr-02 CSE 373 - Data Structures - 11 - Binary Heaps 24

Sentinel Values
• Every iteration of Insert needs to test:

› if it has reached the top node A[1]
› if parent ≤ item

• Can avoid first test if A[0] contains a
very large negative value
› sentinel -∞ < item, for all items

• Second test alone always stops at top

-∞

5

83

91047

6911

2

value

index

-∞ 2 3 8 7 4 10 9
0 1 2 3 4 5 6 7

11 9 6 5
8 9 10 11 12 13

26-Apr-02 CSE 373 - Data Structures - 11 - Binary Heaps 25

Summary of Heap ADT Analysis
• Space needed for heap of N nodes: O(MaxN)

› An array of size MaxN, plus a variable to store
the size N, plus an array slot to hold the sentinel

• Time
› FindMin: O(1)
› DeleteMin and Insert: O(log N)
› BuildHeap from N inputs

• N Insert operations = O(N log N)
• Treat input array as a heap and fix it using percolate

down = O(N)

26-Apr-02 CSE 373 - Data Structures - 11 - Binary Heaps 26

Other Heap Operations

• Find(X, H): Find the element X in heap H of N
elements
› What is the running time? O(N)

• FindMax(H): Find the maximum element in H
› What is the running time? O(N)

• We sacrificed performance of these operations
in order to get O(1) performance for FindMin

26-Apr-02 CSE 373 - Data Structures - 11 - Binary Heaps 27

Other Heap Operations

• DecreaseKey(P,∆,H): Decrease the key
value of node at position P by a positive
amount ∆. eg, to increase priority
› First, subtract ∆ from current value at P
› Heap order property may be violated
› so percolate up to fix
› Running Time: O(log N)

26-Apr-02 CSE 373 - Data Structures - 11 - Binary Heaps 28

Other Heap Operations

• IncreaseKey(P,∆,H): Increase the key value
of node at position P by a positive amount
∆. eg, to decrease priority
› First, add ∆ to current value at P
› Heap order property may be violated
› so percolate down to fix
› Running Time: O(log N)

26-Apr-02 CSE 373 - Data Structures - 11 - Binary Heaps 29

Other Heap Operations
• Delete(P,H): E.g. Delete a job waiting in

queue that has been preemptively
terminated by user
› Use DecreaseKey(P,∞,H) followed by

DeleteMin
› Be careful about your sentinel value and

overflow
› Running Time: O(log N)

26-Apr-02 CSE 373 - Data Structures - 11 - Binary Heaps 30

Other Heap Operations

• Merge(H1,H2): Merge two heaps H1 and H2
of size O(N). H1 and H2 are stored in two
arrays.
› Can do O(N) Insert operations: O(N log N) time
› Better: Copy H2 at the end of H1 and use

BuildHeap. Running Time: O(N)
• Merges in O(log N) coming soon to a lecture

hall near you ...

