Readings and References • Reading **Binary Heaps** > Sections 6.1-6.4, Data Structures and Algorithm Analysis in C, Weiss CSE 373 - Data Structures • Other References April 26, 2002 26-Apr-02 CSE 373 - Data Structures - 11 - Binary Heaps A New Problem... Use Lists or Binary Search Tree? • Application: Find the smallest (or highest • We want an ADT that can efficiently priority) item quickly perform: > Operating system needs to schedule jobs > FindMin (and DeleteMin) according to priority > Insert > Doctors in ER take patients according to • What if we use... severity of injuries > Lists: If sorted, what is the run time for Insert > Event simulation (bank customers arriving and and FindMin? Unsorted? departing, ordered according to when the event > Binary Search Trees: What is the run time for happened)

26-Apr-02

3

26-Apr-02

Insert and FindMin?

4

2

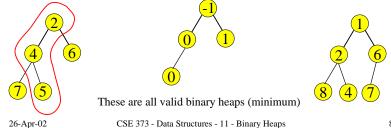
Less flexibility \rightarrow More speed Better than a speeding BST • Lists • We can do better than Binary Search Trees > If sorted: FindMin is O(1) but Insert is O(N)> Very limited requirements: Insert, FindMin, DeleteMin > If not sorted: Insert is O(1) but FindMin is O(N) \rightarrow FindMin is O(1) • Binary Search Trees (BSTs) \rightarrow Insert is O(log N) > Insert is O(log N) and FindMin is O(log N) \rightarrow DeleteMin is O(log N) • BSTs look good but... > BSTs are efficient for all Finds, not just FindMin > We only need FindMin 26-Apr-02 5 6 CSE 373 - Data Structures - 11 - Binary Heaps 26-Apr-02 CSE 373 - Data Structures - 11 - Binary Heaps

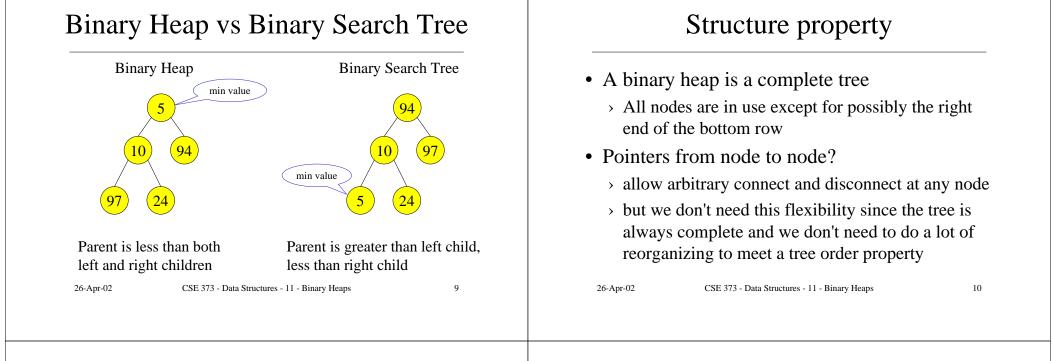
- **Binary Heaps**
- A binary heap is a binary tree that is:
 - > Complete: the tree is completely filled except possibly the bottom level, which is filled from left to right
 - > Satisfies the heap order property
 - every node is less than or equal to its children
 - or every node is greater than or equal to its children
- The root node is always the smallest node ٠
 - > or the largest, depending on the heap order

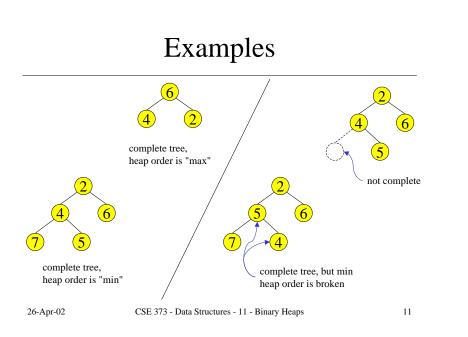
7

Heap order property

- A heap provides limited ordering information
- Each *path* is sorted, but the subtrees are not sorted relative to each other
 - > A binary heap is NOT a binary search tree

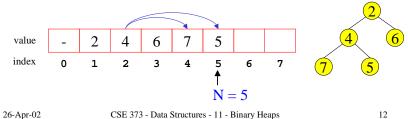


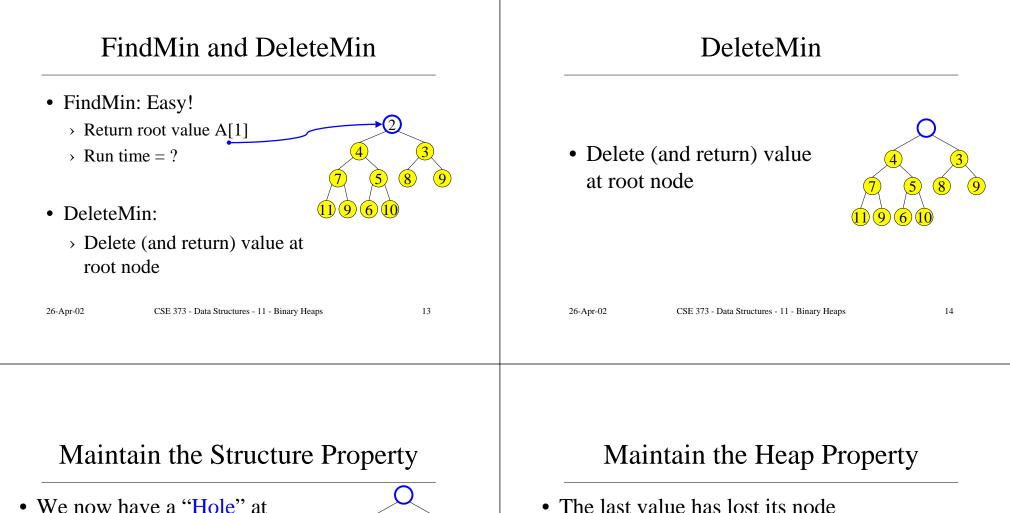




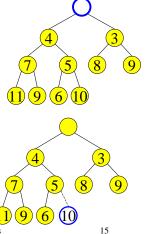
Array Implementation of Heaps

- Root node = A[1]
- Children of A[i] = A[2i], A[2i + 1]
- Keep track of current size N (number of nodes)



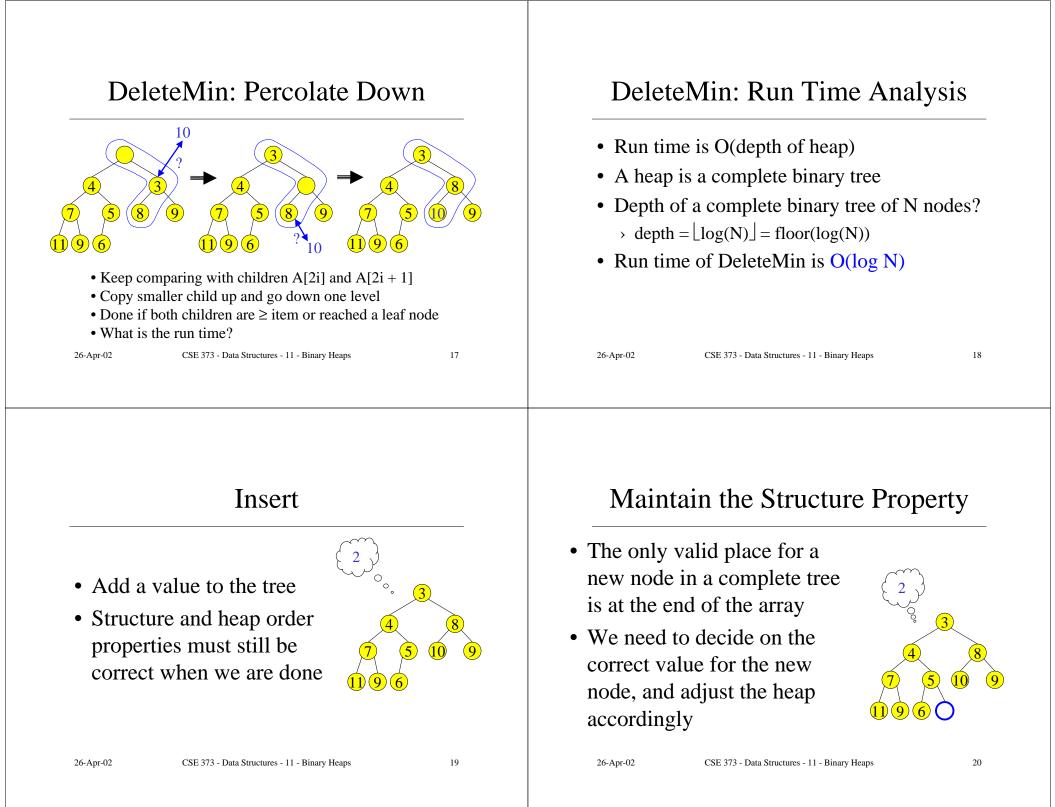


- the root
 - > Need to fill the hole with another value
- When we get done, the tree will have one less node and must still be complete



- - > we need to find a new place for it
- We can do a simple insertion sort operation to find the correct place for it in the tree

10



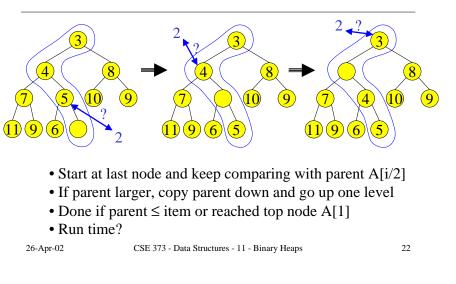
Maintain the Heap Property

- The new value goes where?
- We can do a simple insertion sort operation to find the correct place for it in the tree

3 4 7 5 10 9 1 9 6

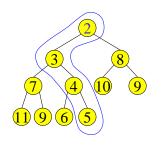
21

Insert: Percolate Up



Insert: Done

CSE 373 - Data Structures - 11 - Binary Heaps



• Run time?

26-Apr-02

26-Apr-02

23

Sentinel Values

- Every iteration of Insert needs to test:
 - \rightarrow if it has reached the top node A[1]
 - → if parent \leq item
- Can avoid first test if A[0] contains a very large negative value
- \rightarrow sentinel - ∞ < item, for all items
- Second test alone always stops at top

value	-∞	2	3	8	7	4	10	9	11	9	6	5			
index	0	1	2	3	4	5	6	7	8	9	10	11	12	13	
26-Apr-02			С	SE 373	3 - Dat	a Stru	ctures -	11 - I	Binary	Heaps					2

Summary of Heap ADT Analysis

- Space needed for heap of N nodes: O(MaxN)
 - > An array of size MaxN, plus a variable to store the size N, plus an array slot to hold the sentinel
- Time
 - \rightarrow FindMin: O(1)
 - > DeleteMin and Insert: O(log N)
 - > BuildHeap from N inputs
 - N Insert operations = $O(N \log N)$
 - Treat input array as a heap and fix it using percolate down = O(N)25
- 26-Apr-02
- CSE 373 Data Structures 11 Binary Heaps

Other Heap Operations

- Find(X, H): Find the element X in heap H of N elements
 - \rightarrow What is the running time? O(N)
- FindMax(H): Find the maximum element in H
 - \rightarrow What is the running time? O(N)
- We sacrificed performance of these operations in order to get O(1) performance for FindMin
- 26-Apr-02
- CSE 373 Data Structures 11 Binary Heaps

26

Other Heap Operations

- DecreaseKey(P,Δ,H): Decrease the key value of node at position P by a positive amount Δ . eg, to increase priority
 - \rightarrow First, subtract Δ from current value at P
 - > Heap order property may be violated
 - \rightarrow so percolate up to fix
 - \rightarrow Running Time: O(log N)

Other Heap Operations

- IncreaseKey(P,Δ,H): Increase the key value of node at position P by a positive amount Δ . eg, to decrease priority
 - \rightarrow First, add Δ to current value at P
 - > Heap order property may be violated
 - > so percolate down to fix
 - > Running Time: O(log N)

Other Heap Operations

- Delete(P,H): E.g. Delete a job waiting in queue that has been preemptively terminated by user
 - > Use DecreaseKey(P,∞,H) followed by DeleteMin
 - Be careful about your sentinel value and overflow
 - > Running Time: O(log N)

26-Apr-02	CSE 373 - Data Structures - 11 - Binary Heaps	29

Other Heap Operations

- Merge(H1,H2): Merge two heaps H1 and H2 of size O(N). H1 and H2 are stored in two arrays.
 - > Can do O(N) Insert operations: $O(N \log N)$ time
 - Better: Copy H2 at the end of H1 and use BuildHeap. Running Time: O(N)
- Merges in O(log N) coming soon to a lecture hall near you ...

30

26-Apr-02	CSE 373 - Data Structures - 11 - Binary Heaps