Hashing

CSE 373 - Data Structures
 April 22, 2002

Readings and References

- Reading
> Chapter 5, Data Structures and Algorithm Analysis in C, Weiss
- Other References
> Hashing, Introduction to Algorithms, Cormen, Leiserson and Rivest

The need for speed

- Data structures we have looked at so far
> Use comparison operations to find items
> Need $\mathrm{O}(\mathrm{N})$ or $\mathrm{O}(\log \mathrm{N})$ time for Find and Insert
- In real world applications, N is typically between 100 and 100,000 (or more)
, $\log \mathrm{N}$ is between 6.6 and 16.6
- Hash tables are an abstract data type designed for $\mathrm{O}(1)$ Find and Inserts

Fewer functions faster

- compare lists and stacks
> by reducing the flexibility of what we are allowed to do, we can increase the performance of the remaining operations
> insert(L,X) into a list versus push(S,X) onto a stack
- compare trees and hash tables
> trees provide for known ordering of all elements
> hash tables just let you (quickly) find an element

Limited Set of Hash Operations

- For many applications, a limited set of operations is all that is needed
> Insert, Find, and Delete
> Note that no ordering of elements is implied
- For example, a compiler needs to maintain information about the symbols in a program
> user defined
> language keywords

Direct Address Tables

- Direct addressing using an array is very fast
- Assume
> keys are integers in the set $\mathrm{U}=\{0,1, \ldots m-1\}$
> m is small
> no two elements have the same key
- Then just store each element at the array location array[key]
> search, insert, and delete are trivial

Direct Access Table

[Cormen, et al]

Direct Address Implementation

Delete (Table t, ElementType x) T[key[x]] = NULL

Insert (Table t, ElementType x) T[key[x]] $=\mathbf{x}$

Find (Table t, Key k)
return $T[k]$

An Issue

- The largest possible key in U may be much larger than the number of elements actually stored ($|\mathrm{U}|$ much greater than $|\mathrm{K}|$)
> the table is very sparse and wastes space
> in worst case, table too large to have in memory
- If most keys in U are used
> direct addressing can work very well
- If most keys in U are not used
> need to map U to a smaller set closer in size to K

Mapping the Keys

Hashing schemes

- We want to store N items in a table of size M , at a location computed from the key K
- Hash function
, Method for computing table index from key
- Collision resolution strategy
> How to handle two keys that hash to the same index

Looking for an element

- Data records can be stored in arrays.
> $\mathrm{A}[0]=\{$ "CHEM 110", Size 89\}
> $\mathrm{A}[3]=\{$ "CSE 142", Size 251\}
> A[17] = \{"CSE 373", Size 85\}
- Class size for CSE 373?
> Linear search the array $-\mathrm{O}(\mathrm{N})$ worst case time
> Binary search - $\mathrm{O}(\log \mathrm{N})$ worst case

Go directly to the element

- What if we could directly index into the array using the key?
> A["CSE 373"] = \{Size 85\}
- Main idea behind hash tables
> Use a key based on some aspect of the data element to index directly into an array
> $\mathrm{O}(1)$ time to access records

Indexing into hash table

- Need a fast hash function to convert the element key (string or number) to an integer (the hash value) (ie, map from U to index)
, Then use this value to index into an array
> Hash("CSE 373") = 157, Hash("CSE 143") = 101
- Output of the hash function
> must always be less than size of array
> must be as evenly distributed as possible

Choosing the hash function

- What properties do we want from a hash function?
> Want universe of hash values to be distributed randomly to minimize collisions
> Don't want systematic nonrandom pattern in selection of keys to lead to systematic collisions
> Want hash value to depend on all values in entire key and their positions

The key values are important

- Notice that one key issue with all the hash functions is that the actual content of the key set matters
- The elements in K (the keys that are used) are quite possibly a restricted subset of U , not just a random collection
> variable names, words in the English language, reserved keywords, telephone numbers, etc, etc

Simple hashes

- It's possible to have very simple hash functions if you are certain of your keys
- For example,
> suppose we know that the keys s will be real numbers uniformly distributed over $0 \leq s<1$
> Then a very fast, very good hash function is
- hash(s) = floor $(s \cdot m)$
- where m is the size of the table

very simple mapping

- hash(s) $=$ floor $(s \cdot m)$ maps from $0 \leq s<1$ to $0 . . \mathrm{m}-1$
> $\mathrm{m}=10$

floor (s*m)

Note the even distribution. There are collisions, but we will deal with them later.

Perfect hashing

- In some cases it's possible to map a known set of keys uniquely to a set of index values
- You must know every single key beforehand and be able to derive a function that works one-to-one (not necessarily onto)

integer key modulo table size

- One solution for a less constrained key set
, modular arithmetic
- a mod size
> remainder when "a" is divided by "size"
> in C this is written as $\boldsymbol{r}=\mathbf{a} \%$ size;
> If TableSize $=251$
- $408 \bmod 251=157$
- $352 \bmod 251=101$

modulo mapping

- $a \bmod m$ maps from integers to $0 . . \mathrm{m}-1$
> one to one? no
> onto? yes

22-Apr-02

CSE 373 - Data Structures - 10 - Hashing

Hash function : mod

- If keys are integers, we can use the hash function:
> Hash $($ key $)=$ key mod TableSize
- Problem 1: What if TableSize is 11 and all keys are 2 repeated digits? (eg, 22, 33, ...)
> all keys map to the same index
> Need to pick TableSize carefully: often, a prime number

Keys as Natural Numbers

- Most hash functions assume that the universe of keys is the natural numbers $\mathbf{N}=\{0,1, \ldots\}$
- Need to find a function to convert the actual key to a natural number quickly and effectively before or during the hash calculation
- Generally work with the ASCII character codes when converting strings to numbers

Hash Function : add chars

- If keys are strings can get an integer by adding up ASCII values of characters in key

```
hashValue = 0;
while (*key != `\0')
    hashValue += *key++;
```

character \longrightarrow| C | S | E | | 3 | 7 | 3 | $<0>$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ASCII value $\longrightarrow 67$ | 83 | 69 | 32 | 51 | 55 | 51 | 0 |

- We are converting a very large number $\left(\mathrm{c}_{0} \mathrm{c}_{1} \mathrm{c}_{2} \mathrm{c}_{3} \mathrm{c}_{4}\right)$ to a relatively small number $\left(\mathrm{c}_{0}+\mathrm{c}_{1}+\mathrm{c}_{2}+\mathrm{c}_{3}+\mathrm{c}_{4}\right)$

Hash must cover the whole table

- Problem 2: What if TableSize is 10,000 and all keys are 8 or less characters long?
> chars have values between 0 and 127
> Keys will hash only to positions 0 through 8*127 $=1016$
- Need to distribute keys over the entire table or the extra space is wasted

Issues with hash add char

- Problems with adding up character values for string keys
> If string keys are short, will not hash evenly to all of the hash table
> Different character combinations hash to same value
- "abc", "bca", and "cab" all add up to the same value

Hash function : chars as digits

- Suppose keys can use any of 26 characters plus blank (27 characters numbered 0 to 26)
> these are digits in a base 27 representation of a number
> can use 32 instead of 27 and shift left by 5 bits for fast multiplication, ie, consider the number to be a base 32 value
- A key conversion function for short strings
, "abc" $=1 * 32^{2}+2 * 32^{1}+3=1091$
>"bca" $=2 * 32^{2}+3 * 32^{1}+1=2243$
> "cab" $=3 * 32^{2}+1 * 32^{1}+2=6342$

Collisions

- A collision occurs when two different keys hash to the same value
, E.g. For TableSize $=17$, the keys 18 and 35 hash to the same value
> $18 \bmod 17=1$ and $35 \bmod 17=1$
- Cannot store both data records in the same slot in array!

Collision Resolution

- Separate Chaining
> Use data structure (such as a linked list) to store multiple items that hash to the same slot
- Open addressing (or probing)
> search for empty slots using a second function and store item in first empty slot that is found

Resolution by Separate Chaining

- Each hash table cell holds pointer to linked list of records with same hash value ($\mathrm{i}, \mathrm{j}, \mathrm{k}$ in figure)
- Collision: Insert item into linked list
- To Find an item: compute hash value, then do Find on linked list
- Note that there are potentially as many as TableSize lists

Why lists?

- Can use List ADT for Find/Insert/Delete in linked list
> $\mathrm{O}(\mathrm{N})$ runtime where N is the number of elements in the particular chain
- Can also use Binary Search Trees
> $\mathrm{O}(\log \mathrm{N})$ time instead of $\mathrm{O}(\mathrm{N})$
> But the number of elements to search through should be small
> generally not worth the overhead of BSTs

Load Factor of a Hash Table

- Let $\mathrm{N}=$ number of items to be stored
- Load factor $\lambda=\mathbf{N} /$ TableSize
> TableSize $=101$ and $\mathrm{N}=505$, then $\lambda=5$
, TableSize $=101$ and $\mathrm{N}=10$, then $\lambda=0.1$
- Average length of chained list $=\lambda$ and so average time for accessing an item $=\mathrm{O}(1)+$ $\mathrm{O}(\lambda)$
> Want λ to be close to 1 (i.e. TableSize $\approx \mathrm{N}$)
> But chaining continues to work for $\lambda>1$

Resolution by Open addressing

- No links, all keys are in the table
> reduced overhead saves space
- When searching for x, check locations $h_{1}(X), h_{2}(X), h_{3}(X), \ldots$ until either
, X is found; or
> we find an empty location (X not present)
- Various flavors of open addressing differ in which probe sequence they use

Cell Full? Keep looking.

- $h_{i}(X)=(H a s h(X)+F(i))$ mod TableSize > Define $\mathrm{F}(0)=0$
- F is the collision resolution function. Some possibilities:
> Linear: $\mathrm{F}(\mathrm{i})=\mathrm{i}$
> Quadratic: $\mathrm{F}(\mathrm{i})=\mathrm{i}^{2}$
> Double Hashing: $\mathrm{F}(\mathrm{i})=\mathrm{i} \cdot \operatorname{Hash}_{2}(\mathrm{X})$

Linear probing

- When searching for K , check locations $h(K), h(K)+1, h(K)+2, \ldots$ until either
$>K$ is found; or
> we find an empty location (K not present)
- If table is very sparse, almost like separate chaining.
- When table starts filling, we get clustering but still constant average search time.
- Full table \Rightarrow infinite loop.

Primary clustering phenomenon

- Once a block of a few contiguous occupied positions emerges in table, it becomes a "target" for subsequent collisions
- As clusters grow, they also merge to form larger clusters.
- Primary clustering: elements that hash to different cells probe same alternative cells

Linear probing -- clustering

[R. Sedgewick]

Quadratic Probing

- When searching for x , check locations $h_{1}(X), h_{1}(X)+i^{2}, h_{1}(X)+i^{3}, \ldots$ until either
$>X$ is found; or
> we find an empty location (X not present)
- No primary clustering but secondary clustering possible

Double hashing

- When searching for X, check locations $h_{1}(X)$, $h_{1}(X)+h_{2}(X), h_{1}(X)+2 * h_{2}(X), \ldots$ until either $>X$ is found; or
> we find an empty location (X not present)
- Must be careful about $\mathrm{h}_{2}(\mathrm{X})$
> Not 0 and not a divisor of m
$>\mathrm{eg}, \mathrm{h}_{1}(\mathrm{k})=\mathrm{k} \bmod \mathrm{m}_{1}, \mathrm{~h}_{2}(\mathrm{k})=1+\left(\mathrm{k} \bmod \mathrm{m}_{2}\right)$
> where m_{2} is slightly less than m_{1}

Double hashing

Rules of thumb

- Separate chaining is simple but wastes space...
- Linear probing uses space better, is fast when tables are sparse, interacts well with paging
- Double hashing is space efficient, fast (get initial hash and increment at the same time), needs careful implementation
- For average cost t
, Max load for Linear Probe is $1-\frac{1}{\sqrt{t}}$
, Max load for Double Hashing is $1-\frac{1}{t}$

Rehashing - rebuild the table

- Need to use lazy deletion if we use probing (why?)
> Need to mark array slots as deleted after Delete
> consequently, deleting doesn't make the table any less full than it was before the delete
- If table gets too full ($\lambda \approx 1$) or if many deletions have occurred, running time gets too long and Inserts may fail

Rehashing

- Build a bigger hash table (of size $2 *$ TableSize) when λ exceeds a particular value
> Go through old hash table, ignoring items marked deleted
, Recompute hash value for each non-deleted key and put the item in new position in new table
> Cannot just copy data from old table because the bigger table has a new hash function
- Running time is $\mathrm{O}(\mathrm{N})$ but happens very infrequently

Caveats

- Hash functions are very often the cause of performance bugs.
- Hash functions often make the code not portable.
- Sometime a poor HF distribution-wise is faster overall.
- Always check where the time goes

Appendix

Positional Notation

- Each column in a number represents an additional power of the base number
- in base ten

$$
\text { > } 1=1 * 10^{0}, 30=3 * 10^{1}, 200=2 * 10^{2}
$$

- in base sixteen
> $1=1 * 16^{0}, 30=3 * 16^{1}, 200=2 * 16^{2}$
> we use $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$ to represent the numbers between 9_{16} and 10_{16}

Binary, Hex, and Decimal

$\begin{aligned} & \stackrel{+}{-1} \\ & \stackrel{0}{n} \\ & \underset{N}{N} \\ & \stackrel{\infty}{N} \end{aligned}$	$\begin{gathered} o \\ \infty \\ \underset{\sim}{\infty} \\ \underset{\sim}{\\|} \\ \underset{\sim}{n} \end{gathered}$		$\underset{\substack{0 \\ \underset{\sim}{n} \\ \stackrel{i}{n} \\ N}}{ }$		$\begin{aligned} & \circ \\ & \infty_{0}^{1} \\ & \stackrel{11}{\sim} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\Re} \\ & \stackrel{1}{\sim} \\ & \sim \end{aligned}$	$\stackrel{\stackrel{0}{N}}{\stackrel{N}{N}}$		Hex_{16}	Decimal ${ }_{10}$
							1	1	3	3
					1	0	0	1	9	9
					1	0	1	0	A	10
					1	1	1	1	F	15
				1	0	0	0	0	10	16
				1	1	1	1	1	1F	31
		1	1	1	1	1	1	1	7F	127
	1	1	1	1	1	1	1	1	FF	255

Binary, Hex, and Decimal

Binary ${ }_{2}$			$$			Decimal ${ }_{10}$
11					3	3
1001					9	9
1010					A	10
1111					F	15
10000				1	0	16
11111				1	F	31
1111111				7	F	127
11111111				F	F	255

CSE 373 - Data Structures - 10 - Hashing

Binary, Hex, and Decimal

Binary ${ }_{2}$	Hex_{16}			$\begin{aligned} & 0 \\ & \stackrel{-}{\circ} \\ & \stackrel{1}{\prime \prime} \\ & 0 \\ & - \end{aligned}$	
11	3				3
1001	9				9
1010	A			1	0
1111	F			1	5
10000	10			1	6
11111	1 F			3	1
1111111	7F		1	2	7
11111111	FF		2	5	5

