## Hashing

CSE 373 - Data Structures April 22, 2002

#### Readings and References

#### Reading

> Chapter 5, Data Structures and Algorithm Analysis in C, Weiss

#### Other References

 Hashing, Introduction to Algorithms, Cormen, Leiserson and Rivest

#### The need for speed

- Data structures we have looked at so far
  - Use comparison operations to find items
  - $\rightarrow$  Need O(N) or  $O(\log N)$  time for Find and Insert
- In real world applications, N is typically between 100 and 100,000 (or more)
  - > log N is between 6.6 and 16.6
- Hash tables are an abstract data type designed for O(1) Find and Inserts

#### Fewer functions faster

- compare lists and stacks
  - by reducing the flexibility of what we are allowed to do, we can increase the performance of the remaining operations
  - > insert(L,X) into a list versus push(S,X) onto a stack
- compare trees and hash tables
  - > trees provide for known ordering of all elements
  - > hash tables just let you (quickly) find an element

### Limited Set of Hash Operations

- For many applications, a limited set of operations is all that is needed
  - > Insert, Find, and Delete
  - > Note that no ordering of elements is implied
- For example, a compiler needs to maintain information about the symbols in a program
  - > user defined
  - > language keywords

#### Direct Address Tables

- Direct addressing using an array is very fast
- Assume
  - > keys are integers in the set  $U=\{0,1,...m-1\}$
  - > m is small
  - > no two elements have the same key
- Then just store each element at the array location array[key]
  - > search, insert, and delete are trivial

#### Direct Access Table



[Cormen, et al]

#### Direct Address Implementation

```
Delete(Table t, ElementType x)
  T[key[x]] = NULL
Insert(Table t, ElementType x)
  T[key[x]] = x
Find(Table t, Key k)
  return T[k]
```

#### An Issue

- The largest possible key in U may be much larger than the number of elements actually stored (|U| much greater than |K|)
  - > the table is very sparse and wastes space
  - > in worst case, table too large to have in memory
- If most keys in U are used
  - > direct addressing can work very well
- If most keys in U are not used
  - > need to map U to a smaller set closer in size to K

# Mapping the Keys



#### Hashing schemes

- We want to store N items in a table of size M, at a location computed from the key K
- Hash function
  - > Method for computing table index from key
- Collision resolution strategy
  - > How to handle two keys that hash to the same index

#### Looking for an element

- Data records can be stored in arrays.
  - > A[0] = {"CHEM 110", Size 89}
  - $\rightarrow$  A[3] = {"CSE 142", Size 251}
  - $\rightarrow$  A[17] = {"CSE 373", Size 85}
- Class size for CSE 373?
  - $\rightarrow$  Linear search the array O(N) worst case time
  - > Binary search O(log N) worst case

### Go directly to the element

- What if we could directly index into the array using the key?
  - > A["CSE 373"] = {Size 85}
- Main idea behind hash tables
  - > Use a key based on some aspect of the data element to index directly into an array
  - $\rightarrow$  O(1) time to access records

#### Indexing into hash table

- Need a fast *hash function* to convert the element key (string or number) to an integer (the *hash value*) (ie, map from U to index)
  - > Then use this value to index into an array
  - > Hash("CSE 373") = 157, Hash("CSE 143") = 101
- Output of the hash function
  - > must always be less than size of array
  - > must be as evenly distributed as possible

#### Choosing the hash function

- What properties do we want from a hash function?
  - > Want universe of hash values to be distributed randomly to minimize collisions
  - > Don't want systematic nonrandom pattern in selection of keys to lead to systematic collisions
  - > Want hash value to depend on all values in entire key and their positions

### The key values are important

- Notice that one key issue with all the hash functions is that the actual content of the key set matters
- The elements in K (the keys that are used) are quite possibly a restricted subset of U, not just a random collection
  - > variable names, words in the English language, reserved keywords, telephone numbers, etc, etc

### Simple hashes

- It's possible to have very simple hash functions if you are certain of your keys
- For example,
  - > suppose we know that the keys s will be real numbers uniformly distributed over  $0 \le s < 1$
  - > Then a very fast, very good hash function is
    - $hash(s) = floor(s \cdot m)$
    - where m is the size of the table

### very simple mapping

• hash(s) = floor( $s \cdot m$ ) maps from  $0 \le s < 1$  to 0..m-1  $\rightarrow m = 10$ 



Note the even distribution. There are collisions, but we will deal with them later.

### Perfect hashing

- In some cases it's possible to map a known set of keys uniquely to a set of index values
- You must know every single key beforehand and be able to derive a function that works *one-to-one* (not necessarily *onto*)





### integer key modulo table size

- One solution for a less constrained key set
  - > modular arithmetic
- a **mod** size
  - > remainder when "a" is divided by "size"
  - > in C this is written as r = a % size;
  - $\rightarrow$  If TableSize = 251
    - $408 \mod 251 = 157$
    - $352 \mod 251 = 101$

### modulo mapping

- a mod m maps from integers to 0..m-1
  - > one to one? no
  - > onto? yes



#### Hash function: mod

- If keys are integers, we can use the hash function:
  - $\rightarrow$  Hash $(key) = key \mod TableSize$
- Problem 1: What if *TableSize* is 11 and all keys are 2 repeated digits? (eg, 22, 33, ...)
  - > all keys map to the same index
  - Need to pick TableSize carefully: often, a prime number

#### Keys as Natural Numbers

- Most hash functions assume that the universe of keys is the natural numbers  $N=\{0,1,...\}$
- Need to find a function to convert the actual key to a natural number quickly and effectively before or during the hash calculation
- Generally work with the ASCII character codes when converting strings to numbers

#### Hash Function: add chars

• If keys are strings can get an integer by adding up ASCII values of characters in *key* 

```
hashValue = 0;
while (*key != '\0')
  hashValue += *key++;
```

| character     | С  | S  | E  |    | 3  | 7  | 3  | <0> |
|---------------|----|----|----|----|----|----|----|-----|
| ASCII value → | 67 | 83 | 69 | 32 | 51 | 55 | 51 | 0   |

• We are converting a very large number  $(c_0c_1c_2c_3c_4)$  to a relatively small number  $(c_0+c_1+c_2+c_3+c_4)$ 

#### Hash must cover the whole table

- Problem 2: What if *TableSize* is 10,000 and all keys are 8 or less characters long?
  - > chars have values between 0 and 127
  - Keys will hash only to positions 0 through 8\*127= 1016
- Need to distribute keys over the entire table or the extra space is wasted

#### Issues with hash add char

- Problems with adding up character values for string keys
  - > If string keys are short, will not hash evenly to all of the hash table
  - Different character combinations hash to same value
    - "abc", "bca", and "cab" all add up to the same value

### Hash function: chars as digits

- Suppose keys can use any of 26 characters plus blank (27 characters numbered 0 to 26)
  - > these are digits in a base 27 representation of a number
  - > can use 32 instead of 27 and shift left by 5 bits for fast multiplication, ie, consider the number to be a base 32 value
- A key conversion function for short strings

$$\rightarrow$$
 "abc" =  $1*32^2 + 2*32^1 + 3 = 1091$ 

$$\rightarrow$$
 "bca" =  $2*32^2 + 3*32^1 + 1 = 2243$ 

$$\rightarrow$$
 "cab" =  $3*32^2 + 1*32^1 + 2 = 6342$ 

#### **Collisions**

- A collision occurs when two different keys hash to the same value
  - > E.g. For *TableSize* = 17, the keys 18 and 35 hash to the same value
  - $\rightarrow$  18 mod 17 = 1 and 35 mod 17 = 1
- Cannot store both data records in the same slot in array!

#### Collision Resolution

- Separate Chaining
  - Use data structure (such as a linked list) to store multiple items that hash to the same slot
- Open addressing (or probing)
  - > search for empty slots using a second function and store item in first empty slot that is found

## Resolution by Separate Chaining

- Each hash table cell holds pointer to linked list of records with same hash value (i, j, k in figure)
- Collision: Insert item into linked list
- To Find an item: compute hash value, then do Find on linked list
- Note that there are potentially as many as *TableSize* lists



### Why lists?

- Can use List ADT for Find/Insert/Delete in linked list
  - > O(N) runtime where N is the number of elements in the particular chain
- Can also use Binary Search Trees
  - > O(log N) time instead of O(N)
  - > But the number of elements to search through should be small
  - > generally not worth the overhead of BSTs

#### Load Factor of a Hash Table

- Let N = number of items to be stored
- Load factor  $\lambda = N/TableSize$ 
  - $\rightarrow$  TableSize = 101 and N = 505, then  $\lambda = 5$
  - $\rightarrow$  TableSize = 101 and N = 10, then  $\lambda = 0.1$
- Average length of chained list =  $\lambda$  and so average time for accessing an item = O(1) + O( $\lambda$ )
  - > Want  $\lambda$  to be close to 1 (i.e.  $TableSize \approx N$ )
  - > But chaining continues to work for  $\lambda > 1$

### Resolution by Open addressing

- No links, all keys are in the table
  - > reduced overhead saves space
- When searching for x, check locations
   h<sub>1</sub>(x), h<sub>2</sub>(x), h<sub>3</sub>(x), ... until either
  - > x is found; or
  - > we find an empty location (x not present)
- Various flavors of open addressing differ in which probe sequence they use

### Cell Full? Keep looking.

- h<sub>i</sub>(X)=(Hash(X)+F(i)) mod TableSize
  - $\rightarrow$  Define F(0) = 0
- F is the collision resolution function. Some possibilities:
  - $\rightarrow$  Linear: F(i) = i
  - > Quadratic:  $F(i) = i^2$
  - > Double Hashing:  $F(i) = i \cdot Hash_2(X)$

### Linear probing

- When searching for K, check locations
   h(K), h(K)+1, h(K)+2, ... until either
  - > **K** is found; or
  - > we find an empty location (K not present)
- If table is very sparse, almost like separate chaining.
- When table starts filling, we get clustering but still constant average search time.
- Full table  $\Rightarrow$  infinite loop.

### Primary clustering phenomenon

- Once a block of a few contiguous occupied positions emerges in table, it becomes a "target" for subsequent collisions
- As clusters grow, they also merge to form larger clusters.
- Primary clustering: elements that hash to different cells probe same alternative cells

# Linear probing -- clustering



[R. Sedgewick]

### Quadratic Probing

- When searching for x, check locations
   h<sub>1</sub>(x), h<sub>1</sub>(x)+ i<sup>2</sup>, h<sub>1</sub>(x)+i<sup>3</sup>,... until either
  - > x is found; or
  - > we find an empty location (x not present)
- No primary clustering but secondary clustering possible

### Double hashing

- When searching for x, check locations  $h_1(x)$ ,  $h_1(x) + h_2(x)$ ,  $h_1(x) + 2*h_2(x)$ , ... until either
  - > x is found; or
  - > we find an empty location (x not present)
- Must be careful about h<sub>2</sub>(X)
  - > Not 0 and not a divisor of M
  - $> eg, h_1(k) = k \mod m_1, h_2(k)=1+(k \mod m_2)$
  - $\rightarrow$  where  $\mathbf{m}_2$  is slightly less than  $\mathbf{m}_1$

## Double hashing



#### Rules of thumb

- Separate chaining is simple but wastes space...
- Linear probing uses space better, is fast when tables are sparse, interacts well with paging
- Double hashing is space efficient, fast (get initial hash and increment at the same time), needs careful implementation
- For average cost t
  - Max load for Linear Probe is 1-1/√t
     Max load for Double Hashing is 1-1/t

### Rehashing - rebuild the table

- Need to use *lazy deletion* if we use probing (why?)
  - > Need to mark array slots as deleted after Delete
  - > consequently, deleting doesn't make the table any less full than it was before the delete
- If table gets too full  $(\lambda \approx 1)$  or if many deletions have occurred, running time gets too long and Inserts may fail

### Rehashing

- Build a bigger hash table (of size 2\*TableSize) when  $\lambda$  exceeds a particular value
  - > Go through old hash table, ignoring items marked deleted
  - > Recompute hash value for each non-deleted key and put the item in new position in new table
  - Cannot just copy data from old table because the bigger table has a new hash function
- Running time is O(N) but happens very infrequently

#### Caveats

- Hash functions are very often the cause of performance bugs.
- Hash functions often make the code not portable.
- Sometime a poor HF distribution-wise is faster overall.
- Always check where the time goes

### Appendix

#### **Positional Notation**

- Each column in a number represents an additional power of the base number
- in base ten
  - $\rightarrow$  1=1\*10<sup>0</sup>, 30=3\*10<sup>1</sup>, 200=2\*10<sup>2</sup>
- in base sixteen
  - $\rightarrow 1=1*16^0, 30=3*16^1, 200=2*16^2$
  - > we use A,B,C,D,E,F to represent the numbers between 9<sub>16</sub> and 10<sub>16</sub>

### Binary, Hex, and Decimal

| $2^{8} = 256_{10}$ | $2^{7}$ =128 <sub>10</sub> | 2 <sup>6</sup> =64 <sub>10</sub> | $2^{5} = 32_{10}$        | $2^4 = 16_{10}$     | $2^3 = 8_{10}$ | $2^2 = 4_{10}$ | $2^{1}=2_{10}$ | $2^0 = 1_{10}$ | l uov             | $\mid$ Decimal $_{10}\mid$ |
|--------------------|----------------------------|----------------------------------|--------------------------|---------------------|----------------|----------------|----------------|----------------|-------------------|----------------------------|
|                    |                            |                                  |                          |                     |                |                |                |                | Hex <sub>16</sub> |                            |
|                    |                            | <br>                             | !<br>!<br>!              | !<br>!<br>!         |                | <br>           | 1              | 1              | 3                 | 3                          |
|                    |                            | <br>                             | ;<br>;<br>;<br>;         | <br> <br> <br> <br> | 1              | 0              | 0              | 1              | 9                 | 9                          |
|                    |                            | <br>                             | <br>                     | <br>                | 1              | 0              | 1              | 0              | A                 | 10                         |
|                    |                            | <br> <br> <br> <br>              | <br>                     | <br>                | 1              | 1              | 1              | 1              | F                 | 15                         |
|                    |                            | ;<br>;<br>;<br>;                 | <br>                     | 1                   | 0              | 0              | 0              | 0              | 10                | 16                         |
|                    |                            | <br> -<br> -<br> -               | <br> -<br> -<br> -<br> - | 1                   | 1              | 1              | 1              | 1              | 1F                | 31                         |
|                    |                            | 1                                | 1                        | 1                   | 1              | 1              | 1              | 1              | 7F                | 127                        |
|                    | 1                          | 1                                | 1                        | 1                   | 1              | 1              | 1              | 1              | FF                | 255                        |

### Binary, Hex, and Decimal

| Binary <sub>2</sub> | $16^4 = 65536_{10}$ | $16^3 = 4096_{10}$ | $16^2 = 256_{10}$ | $16^{1} = 16_{10}$ | $16^0 = 1_{10}$ | $\Big   	extstyle{	t Decimal}_{10}  \Big $ |
|---------------------|---------------------|--------------------|-------------------|--------------------|-----------------|--------------------------------------------|
| 11                  |                     |                    | <br>              |                    | 3               | 3                                          |
| 1001                |                     |                    | <br>              |                    | 9               | 9                                          |
| 1010                |                     |                    | <br>              |                    | A               | 10                                         |
| 1111                |                     |                    | <br>              |                    | F               | 15                                         |
| 1 0000              |                     |                    | ;<br> <br>        | 1                  | 0               | 16                                         |
| 1 1111              |                     |                    | <br>              | 1                  | F               | 31                                         |
| 111 1111            |                     |                    | <br>              | 7                  | F               | 127                                        |
| 1111 1111           |                     |                    | <br>              | F                  | F               | 255                                        |

### Binary, Hex, and Decimal

| Binary <sub>2</sub> | Hex <sub>16</sub> | $10^3 = 1000_{10}$ | $10^2 = 100_{10}$ | $10^{1} = 10_{10}$ | $10^0 = 1_{10}$ |
|---------------------|-------------------|--------------------|-------------------|--------------------|-----------------|
| 11                  | 3                 |                    | <br>              |                    | 3               |
| 1001                | 9                 |                    |                   |                    | 9               |
| 1010                | А                 |                    | <br>              | 1                  | 0               |
| 1111                | F                 |                    | <br>              | 1                  | 5               |
| 1 0000              | 10                |                    | <br>              | 1                  | 6               |
| 1 1111              | 1F                |                    |                   | 3                  | 1               |
| 111 1111            | 7F                |                    | 1                 | 2                  | 7               |
| 1111 1111           | FF                |                    | 2                 | 5                  | 5               |