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Readings and References

• Reading
› Section 4.5-4.7, Data Structures and Algorithm Analysis in C,

Weiss

• Other References
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Self adjustment for better living

• Ordinary binary search trees have no
balance conditions
› what you get from insertion order is it

• Balanced trees like AVL trees enforce a
balance condition when nodes change
› tree is always balanced after an insert or delete

• Self adjusting trees get reorganized over
time as nodes are accessed
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•  Splay trees are tree structures that:
•  Are not perfectly balanced all the time
•  Use Find operations to balance the tree

•future operations may run faster

•  Based on the heuristic:
•  If  X is accessed once, it is likely to be accessed again.

•  The procedure:
-  After node X is accessed, perform “splaying” operations to
bring it up to the root of the tree.
- Do this in a way that leaves the tree more balanced as a whole

Splay Trees
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• Let X be a non-root node with ≥ 2 ancestors.
•  P is its parent node.
•  G is its grandparent node.
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Splay Tree Terminology
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“Zig” means that a node is the outside child of its parent

Zig Zig
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Zag
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“Zag” means that a node is the inside child of its parent, relative
to the "zig" above it
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Zig-Zig and Zig-Zag
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1. Nodes must contain a parent pointer.

element   left      right    parent

2. When X is accessed, apply one of six rotation routines.
• Single Rotations (X has a P (the root) but no G)

• Double Rotations (X has both a P and a G)

• zig_left, zig_right

• zig_zig_left, zig_zig_right
• zig_zag_left, zig_zag_right

Splay Tree Operations
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Zig at depth 1
• “Zig” is just a single rotation, as in an AVL tree
• Let R be the node that was accessed (e.g. using Find)

• Zig-right moves R to the top →faster access next time

Zig-right
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Zig at depth 1

• Suppose Q is now accessed using Find

• Zig-left moves Q back to the top

Zig-left
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Zig-Zag operation

• “Zig-Zag” consists of two rotations of the opposite
direction (assume R is the node that was accessed)

• “Zig-Zag” splaying causes R to move to the top

(Zig-left) (Zig-right)
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Zig-Zig operation

• “Zig-Zig” consists of two single rotations of the
same direction (R is the node that was accessed)

• Again, due to “zig-zig” splaying, R has bubbled to
the top

(Zig-right) (Zig-right)
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Decreasing depth - "autobalance"
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Examples suggest that splaying causes tree to get balanced.
The actual analysis is rather advanced and is in Chapter 11. 

Result of Analysis: Any sequence of  M operations on a splay
tree of size N takes O(M log N) time.

So, the amortized running time for one operation is O(log N).

This guarantees that even if the depths of some nodes
get very large, you cannot get a long sequence of
O(N) searches because each search operation causes
a rebalance.

Analysis of Splay Trees
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• B-tree of order 3 has 2 or 3 children per node

• Search for 8

Beyond Binary Search Trees:
Multi-Way Trees

13:-

6:11

3  4 6  7  8 11 12 13  14 17 18

17:-
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B-Trees are multi-way search trees commonly used in
database systems or other applications where data is stored
externally on disks and keeping the tree shallow is important.

A B-Tree of order M has the following properties:

   1. The root is either a leaf or has between 2 and M children.
   2. All nonleaf nodes (except the root) have between M/2 

and M children.
   3. All leaves are at the same depth. 

All data records are stored at the leaves.
Leaves store between M/2 and M data records.

B-Trees
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B-Tree Details

Each internal node of a B-tree has:
› Between M/2 and M children.
› up to M-1 keys k1 <  k2 < ... < kM-1

Keys are ordered so that:
k1 <  k2 < ... < kM-1

kM-1. . . . . .ki-1 kik1

19-Apr-02 CSE 373 - Data Structures - 9 - Splay Trees and B-Trees 19

Properties of B-Trees

Children of each internal node are "between" the items in that node.
Suppose subtree Ti is the ith child of the node:

all keys in Ti must be between keys ki-1 and ki

i.e. ki-1 ≤ Ti < ki
ki-1 is the smallest key in Ti 
All keys in first subtree T1 < k1
All keys in last subtree TM ≥ kM-1

k1

TTii

. . . . . . kki-1 kkii

TTMTT11

kkM-1

. . . . . . 
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Example: Searching in B-trees

13:-

6:11

3  4 6  7  8 11 12 13  14 17 18

17:-

• B-tree of order 3: also known as 2-3 tree (2 to 3 children)

• Examples: Search for 9, 14, 12
• Note: If leaf nodes are connected as a Linked List, B-tree is

called a B+ tree – Allows sorted list to be accessed easily

- means empty slot
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Inserting and Deleting in B-Trees
• Insert X: Do a Find on X and find appropriate leaf node

› If leaf node is not full, fill in empty slot with X
• E.g. Insert 5

› If leaf node is full, split leaf node and adjust parents up to root node
• E.g. Insert 9

• Delete X: Do a Find on X and delete value from leaf node
› May have to combine leaf nodes and adjust parents up to root node

13:-

6:11

3  4 6  7  8 11 12 13  14 17 18

17:-
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Run Time Analysis of B-Tree
Operations

• For a B-Tree of order M
› Each internal node has up to M-1 keys to search
› Each internal node has between M/2 and M children
› Depth of B-Tree storing N items is O(log M/2 N)

• Find: Run time is:
› O(log M) to binary search which branch to take at each node
› Total time to find an item is O(depth*log M) = O(log N)
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Summary of Search Trees

• Problem with Search Trees: Must keep tree balanced to allow 
fast access to stored items

• AVL trees: Insert/Delete operations keep tree balanced

• Splay trees: Repeated Find operations produce balanced trees

• Multi-way search trees (e.g. B-Trees): More than two children
 per node allows shallow trees; all leaves are at the same depth

keeping tree balanced at all times


