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Readings and References

• Reading
› Section 4.4, Data Structures and Algorithm Analysis in C, Weiss

• Other References
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Binary Search Tree - Best Time

• All BST operations are O(d), where d is tree
depth

• minimum d is log N ≤ d ≤ log (N+1)-1 for a
binary tree with N nodes
› What is the best case tree?
› What is the worst case tree?

• So, best case running time of BST operations
is O(log N)
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Binary Search Tree - Worst Time

• Worst case running time is O(N)
› What happens when you Insert elements in

ascending order?
• Insert: 2, 4, 6, 8, 10, 12 into an empty BST

› Problem: Lack of “balance”:
• compare depths of left and right subtree

› Unbalanced degenerate tree
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Balanced and unbalanced BST
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Approaches to balancing trees
• Don't balance

› likely to end up with some nodes very deep
• Strict balance on insert

› The tree must always be balanced perfectly
• Pretty good balance on insert

› Only allow a little out of balance
• Adjust on access

› better balance through self adjustment
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Balancing Trees

• Many algorithms exist for keeping trees
balanced
› Adelson-Velskii and Landis (AVL) trees
› Splay trees and other self-adjusting trees
› B-trees and other multiway search trees
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Perfect Balance
• Want a complete tree after every operation

› tree is full except possibly in the lower right
• This is expensive

› For example, insert 2 in the tree on the left and then
rebuild as a complete tree

Insert 2 &
complete tree
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AVL - Pretty Good Balance
• AVL trees are height-balanced binary search

trees
• Balance factor of a node

› height(left subtree) - height(right subtree)
• An AVL tree has balance factor calculated at

every node
› For every node, heights of left and right subtree

can differ by no more than 1
› Store current heights in each node
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Node Heights
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Node Heights after Insert 7
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Insert and Rotation in AVL Trees

• Insert operation may cause balance factor to
become 2 or –2 for some node
› only nodes on the path from insertion point to root

node have possibly changed in height
› So after the Insert, go back up to the root node by

node, updating heights
› If a new balance factor (the difference hleft-hright) is

2 or –2, adjust tree by rotation around the node
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Single Rotation in an AVL Tree
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Let the node that needs rebalancing be α.

There are 4 cases:
  Outside Cases (require single rotation) :
     1. Insertion into left subtree of left child of α.
     2. Insertion into right subtree of right child of α.
  Inside Cases (require double rotation) :
     3. Insertion into right subtree of left child of α.
     4. Insertion into left subtree of right child of α.

The rebalancing is performed through four separate rotation 
algorithms.

Insertions in AVL Trees
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Consider a valid
AVL subtree

AVL Insertion: Outside Case
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Inserting into X
destroys the AVL 
property at node j

AVL Insertion: Outside Case
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Do a “right rotation”

AVL Insertion: Outside Case
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Do a “right rotation”

Single right rotation
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j
k

X Y Z

“Right rotation” done!
(“Left rotation” is mirror
   symmetric)

Outside Case Completed

AVL property has been restored!
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AVL Insertion: Inside Case
Consider a valid
AVL subtree
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Inserting into Y 
destroys the
AVL property
at node j 
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AVL Insertion: Inside Case
Does “right rotation”
restore balance?
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“Right rotation”
does not restore
balance… now k is
out of balance

AVL Insertion: Inside Case
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Consider the structure
of subtree Y… j
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AVL Insertion: Inside Case
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Y = node i and
subtrees V and W

AVL Insertion: Inside Case
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AVL Insertion: Inside Case
We will do a left-right 
“double rotation” . . .
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Double rotation : first rotation
left rotation complete
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Double rotation : second rotation

Now do a right rotation
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Double rotation : second rotation

right rotation complete

Balance has been restored
to the universe
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Arguments for AVL trees:

• Search is O(log N) since AVL trees are always balanced.
• The height balancing adds no more than a constant factor to

the speed of insertion.

Arguments against using AVL trees:

   1.  Difficult to program & debug; more space for height info.
   2. Asymptotically faster but can be slow in practice.
   3. Most large searches are done in database systems on disk and

use other structures (e.g. B-trees).
   4. May be OK to have O(N) for a single operation if total run

time for many consecutive operations is fast (e.g. Splay trees).

Pros and Cons of AVL Trees


