AVL Trees

CSE 373 - Data Structures April 17, 2002

Binary Search Tree - Best Time

- All BST operations are O(d), where d is tree depth
- minimum d is $\log N \le d \le \log (N+1)-1$ for a binary tree with N nodes
 - > What is the best case tree?
 - > What is the worst case tree?
- So, best case running time of BST operations is O(log N)

Readings and References

- Reading
 - > Section 4.4, Data Structures and Algorithm Analysis in C, Weiss
- Other References

17-Apr-02

CSE 373 - Data Structures - 8 - AVL Trees

Binary Search Tree - Worst Time

- Worst case running time is O(N)
 - > What happens when you Insert elements in ascending order?
 - Insert: 2, 4, 6, 8, 10, 12 into an empty BST
 - > Problem: Lack of "balance":
 - compare depths of left and right subtree
 - > Unbalanced degenerate tree

17-Apr-02

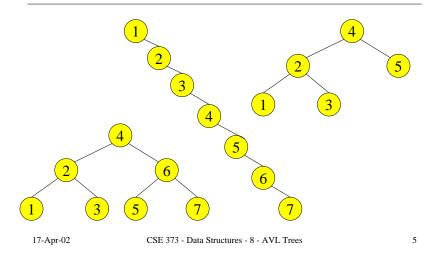
CSE 373 - Data Structures - 8 - AVL Trees

17-Apr-02

CSE 373 - Data Structures - 8 - AVL Trees

2

Balanced and unbalanced BST



Balancing Trees

- Many algorithms exist for keeping trees balanced
 - > Adelson-Velskii and Landis (AVL) trees
 - > Splay trees and other self-adjusting trees
 - > B-trees and other multiway search trees

Approaches to balancing trees

- Don't balance
 - > likely to end up with some nodes very deep
- Strict balance on insert
 - > The tree must always be balanced perfectly
- Pretty good balance on insert
 - > Only allow a little out of balance
- Adjust on access
 - > better balance through self adjustment

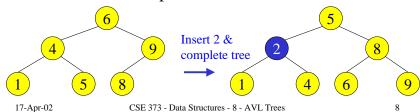
17-Apr-02

CSE 373 - Data Structures - 8 - AVL Trees

6

Perfect Balance

- Want a complete tree after every operation
 - > tree is full except possibly in the lower right
- This is expensive
 - > For example, insert 2 in the tree on the left and then rebuild as a complete tree



17-Apr-02

CSE 373 - Data Structures - 8 - AVL Trees

CSE 373 - Data Structures - 8 - AVL Trees

AVL - Pretty Good Balance

- AVL trees are height-balanced binary search trees
- Balance factor of a node
 - > height(left subtree) height(right subtree)
- An AVL tree has balance factor calculated at every node
 - For every node, heights of left and right subtree can differ by no more than 1
 - > Store current heights in each node

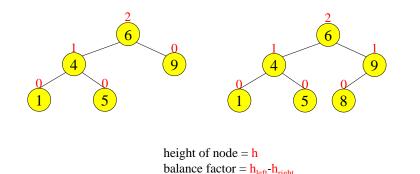
17-Apr-02

CSE 373 - Data Structures - 8 - AVL Trees

9

11

Node Heights



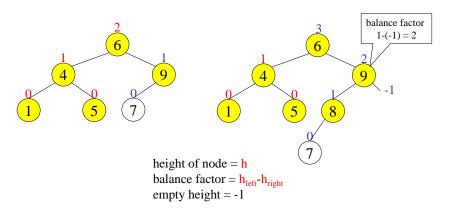
empty height = -1

17-Apr-02

CSE 373 - Data Structures - 8 - AVL Trees

10

Node Heights after Insert 7



Insert and Rotation in AVL Trees

- Insert operation may cause balance factor to become 2 or –2 for some node
 - > only nodes on the path from insertion point to root node have possibly changed in height
 - So after the Insert, go back up to the root node by node, updating heights
 - > If a new balance factor (the difference h_{left} - h_{right}) is 2 or -2, adjust tree by *rotation* around the node

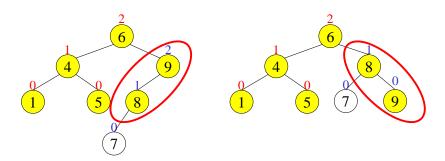
17-Apr-02 CSE 373 - Data Structures - 8 - AVL Trees

17-Apr-02

CSE 373 - Data Structures - 8 - AVL Trees

12

Single Rotation in an AVL Tree



17-Apr-02

17-Apr-02

CSE 373 - Data Structures - 8 - AVL Trees

13

15

Insertions in AVL Trees

Let the node that needs rebalancing be α .

There are 4 cases:

Outside Cases (require single rotation):

- 1. Insertion into left subtree of left child of α .
- 2. Insertion into right subtree of right child of α .

Inside Cases (require double rotation):

- 3. Insertion into right subtree of left child of α .
- 4. Insertion into left subtree of right child of α .

The rebalancing is performed through four separate rotation algorithms.

17-Apr-02

CSE 373 - Data Structures - 8 - AVL Trees

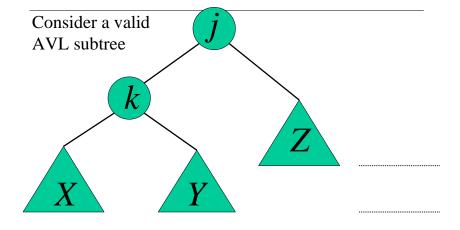
AVL Insertion: Outside Case

14

Inserting into X

destroys the AVL property at node j

AVL Insertion: Outside Case



CSE 373 - Data Structures - 8 - AVL Trees

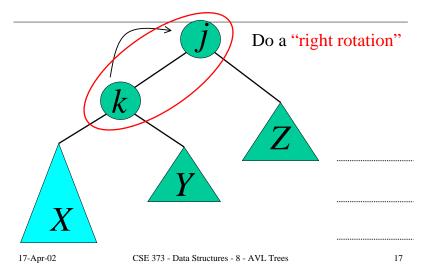
X

17-Apr-02

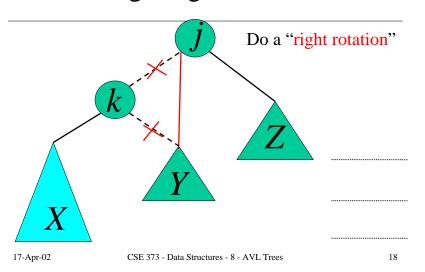
CSE 373 - Data Structures - 8 - AVL Trees

16

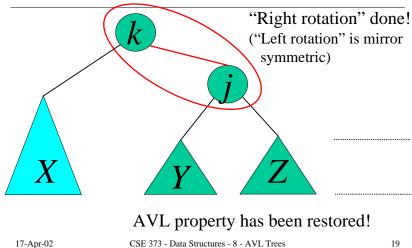
AVL Insertion: Outside Case



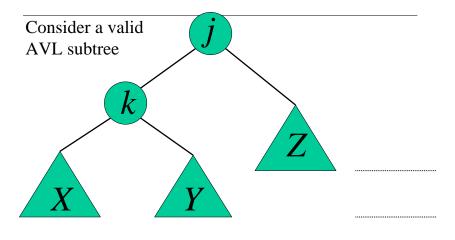
Single right rotation



Outside Case Completed



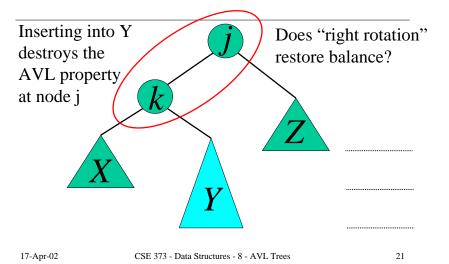
AVL Insertion: Inside Case



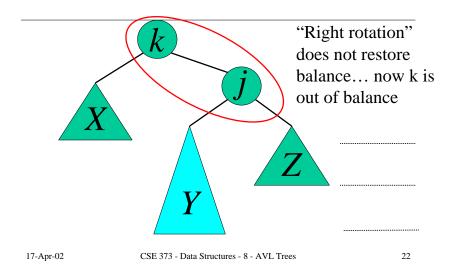
17-Apr-02

CSE 373 - Data Structures - 8 - AVL Trees

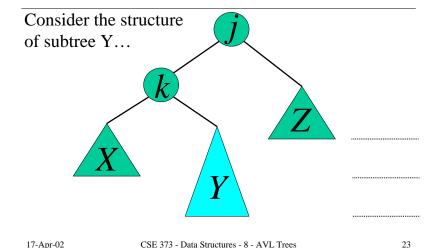
AVL Insertion: Inside Case



AVL Insertion: Inside Case



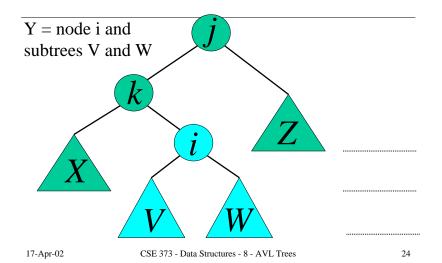
AVL Insertion: Inside Case



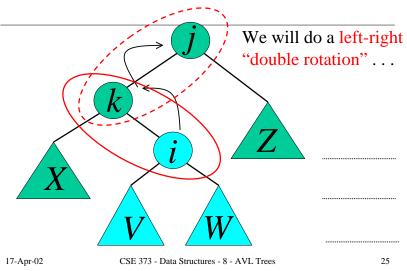
CSE 373 - Data Structures - 8 - AVL Trees

17-Apr-02

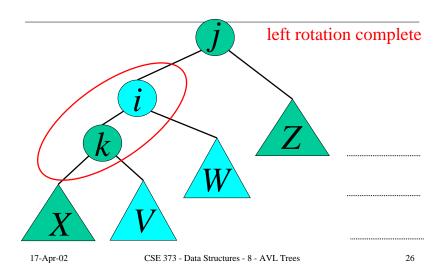
AVL Insertion: Inside Case



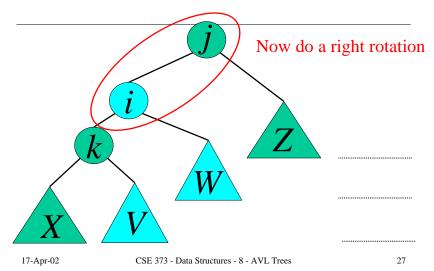
AVL Insertion: Inside Case



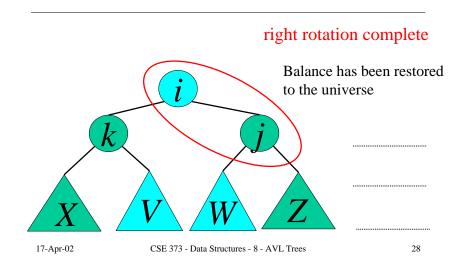
Double rotation: first rotation



Double rotation: second rotation



Double rotation: second rotation



Pros and Cons of AVL Trees

Arguments for AVL trees:

- Search is O(log N) since AVL trees are always balanced.
- The height balancing adds no more than a constant factor to the speed of insertion.

Arguments against using AVL trees:

- 1. Difficult to program & debug; more space for height info.
- 2. Asymptotically faster but can be slow in practice.
- 3. Most large searches are done in database systems on disk and use other structures (e.g. B-trees).
- 4. May be OK to have O(N) for a single operation if total run time for many consecutive operations is fast (e.g. Splay trees).

time for many consecutive operations is fast (e.g. Spiay trees 17-Apr-02 CSE 373 - Data Structures - 8 - AVL Trees 29