Trees - Intro

CSE 373 - Data Structures April 15, 2002

Readings and References

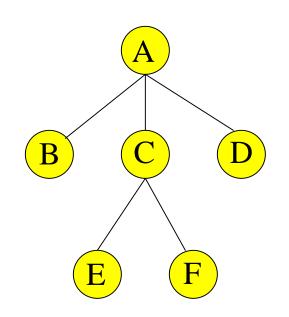
- Reading
 - Chapter 4.1-4.3, Data Structures and Algorithm Analysis in C, Weiss
- Other References

Why Do We Need Trees?

- Lists, Stacks, and Queues are linear relationships
- Information often contains hierarchical relationships
 - > File directories or folders on your computer
 - > Moves in a game
 - > Employee hierarchies in organizations
- Can build a tree to support fast searching

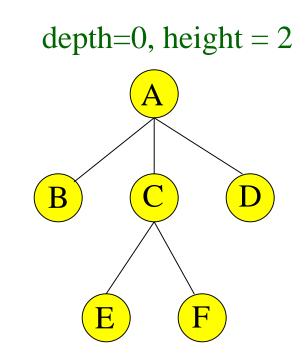
Tree Jargon

- root
- nodes and edges
- leaves
- parent, children, siblings
- ancestors, descendants
- subtrees
- path, path length
- height, depth



More Tree Jargon

- Length of a path = number of edges
- **Depth** of a node N = length of path from root to N
- Height of node N = length of longest path from N to a leaf
- **Depth of tree** = depth of deepest node
- **Height of tree** = height of root



depth = 2, height=0

15-Apr-02

Definition and Tree Trivia

- A tree is a set of nodes
 - that is an empty set of nodes, or
 - has one node called the root from which zero or more trees (subtrees) descend
- A tree with N nodes always has N-1 edges
- Two nodes in a tree have at most one path between them

Paths

- Can a non-zero path from node N reach node N again?
 - No. Trees can never have cycles (loops)
- Does depth of nodes in a non-zero path increase or decrease?
 - > Depth always increases in a non-zero path

Implementation of Trees

- One possible pointer-based Implementation
 > tree nodes with value and a pointer to each child
 > but how many pointers should we allocate space for?
- A more flexible pointer-based implementation
 - > 1st Child / Next Sibling List Representation
 - Each node has 2 pointers: one to its first child and one to next sibling
 - > Can handle arbitrary number of children

Application: Arithmetic Expression Trees

Example Arithmetic Expression:

```
A + (B * (C / D))
```

How would you express this as a tree?

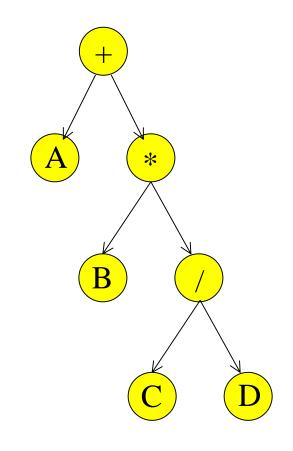
Application: Arithmetic Expression Trees

Example Arithmetic Expression:

A + (B * (C / D))

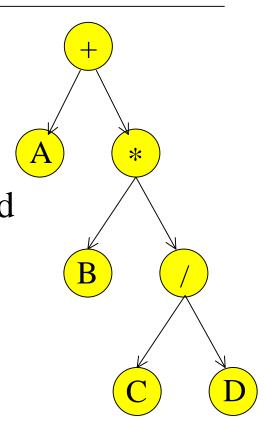
Tree for the above expression:

- Used in most compilers
- No parenthesis need use tree structure
- Can speed up calculations e.g. replace / node with C/D if C and D are known
- Calculate by traversing tree (how?)



Traversing Trees

- Preorder: Node, then Children + A * B / C D
- Inorder: Left child, Node, Right child A + B * C / D
- Postorder: Children, then Node A B C D / * +

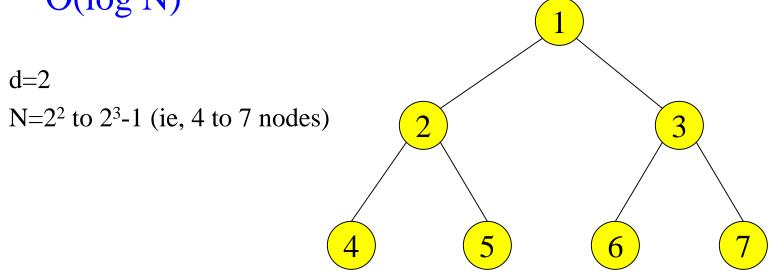


Binary Trees

- Every node has at most two children
 - > Most popular tree in computer science
 - > Easy to implement, fast in operation
- Given N nodes, what is the minimum depth of a binary tree?
 - > At depth d, you can have $N = 2^d$ to 2^{d+1} -1 nodes
 - > minimum depth d is: $\log N \le d \le \log(N+1)-1$ or $\Theta(\log N)$

Minimum depth vs node count

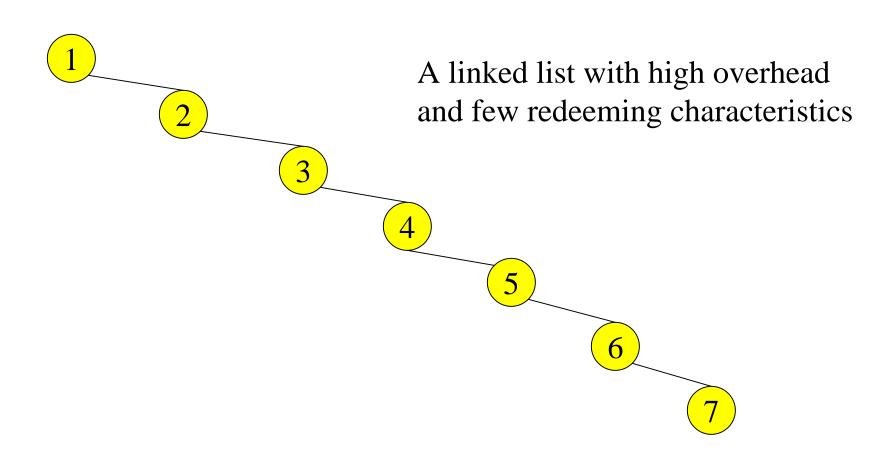
- At depth d, you can have $N = 2^d$ to 2^{d+1} -1 nodes
- minimum depth d is $\log N \le d \le \log(N+1)-1$ or $\Theta(\log N)$



Maximum depth vs node count

- What is the maximum depth of a binary tree?
 - > Degenerate case: Tree is a linked list!
 - > Maximum depth = N-1
- Goal: Would like to keep depth at around log N to get better performance than linked list for operations like Find

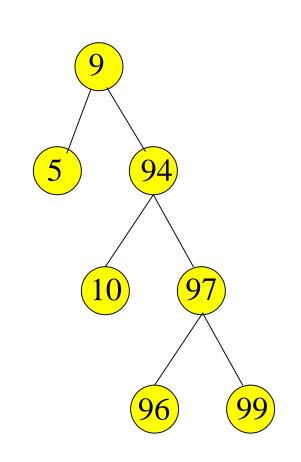
A degenerate tree



CSE 373 - Data Structures - 7 - Trees Intro

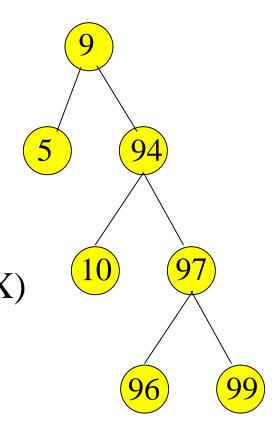
Binary Search Trees

- Binary search trees are binary trees in which
 - > all values in the node's left subtree are less than node value
 - > all values in the node's right subtree are greater than node value
- Operations:
 - > Find, FindMin, FindMax, Insert, Delete



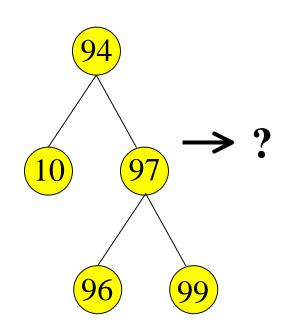
Operations on Binary Search Trees

- How would you implement these?
 - Recursive definition of binary search trees allows recursive routines
- Position FindMin(Tree T)
- Position FindMax(Tree T)
- Position Find(Tree T, ElementType X)
- Tree Insert(Tree T,ElementType X)
- Tree Delete(Tree T, ElementType X)

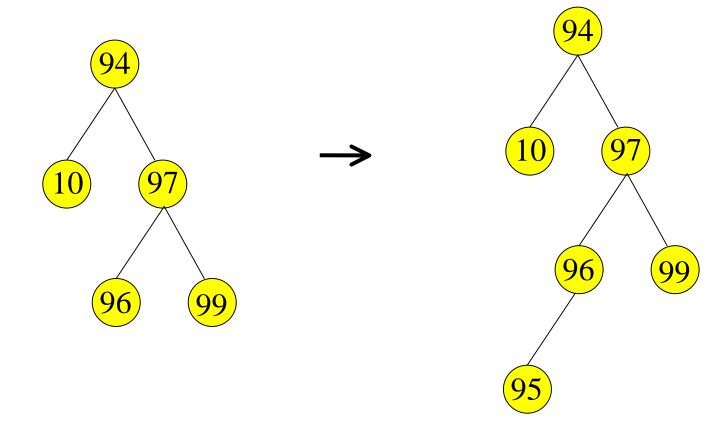


Insert Operation

- Tree Insert(Tree T, ElementType X)
 - > Do a "Find" operation for X
 - > If X is found → update duplicates counter
 - > Else, "Find" stops at a NULL pointer
 - > Insert Node with X there
- Example: Insert 95



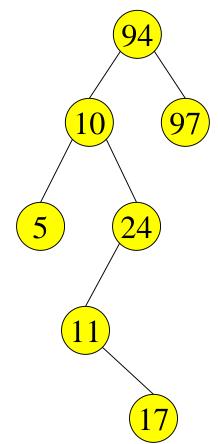
Insert 95



CSE 373 - Data Structures - 7 - Trees Intro

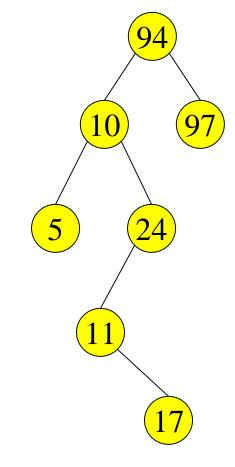
Delete Operation

- Delete is a bit trickier...Why?
- Suppose you want to delete 10
- Strategy:
 - > Find 10
 - > Delete the node containing 10
- Problem: When you delete a node, what do you replace it by?



Delete Operation

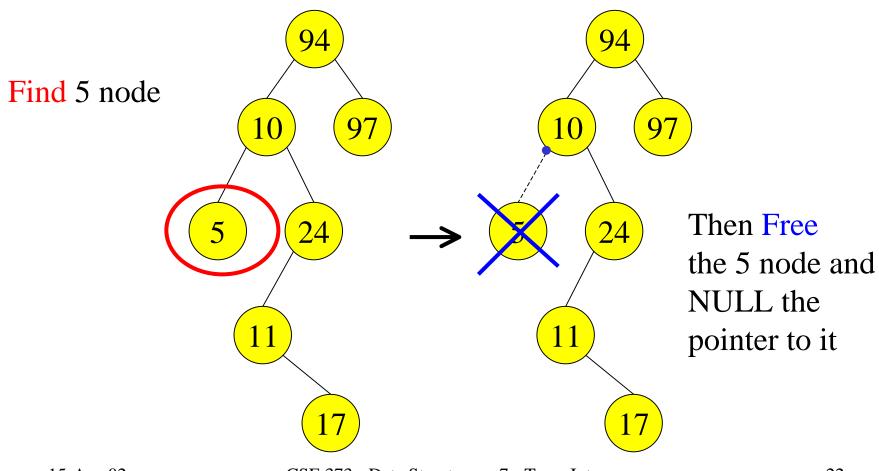
- Problem: When you delete a node, what do you replace it by?
- Solution:
 - > If it has no children, by NULL
 - > If it has 1 child, by that child
 - > If it has 2 children, by the node with the smallest value in its right subtree
- Examples:
 - > Delete 5
 - > Delete 24
 - > Delete 10 (note: recursive deletion)



15-Apr-02

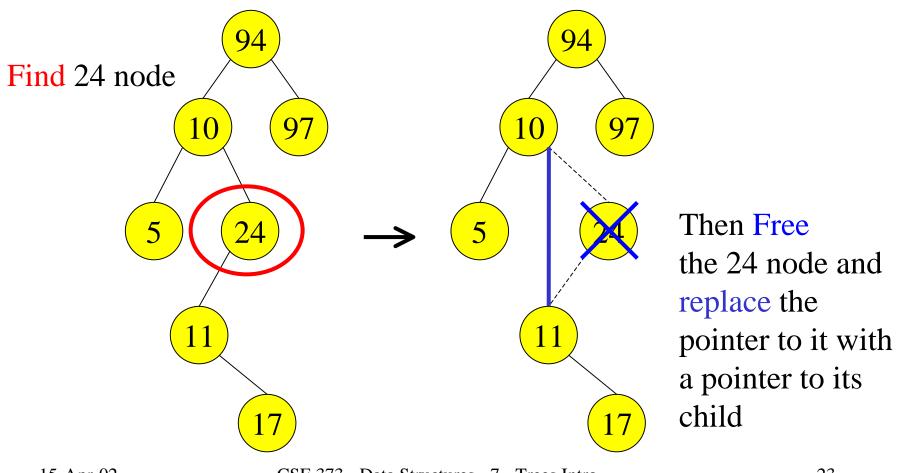
CSE 373 - Data Structures - 7 - Trees Intro

Delete "5" - No children



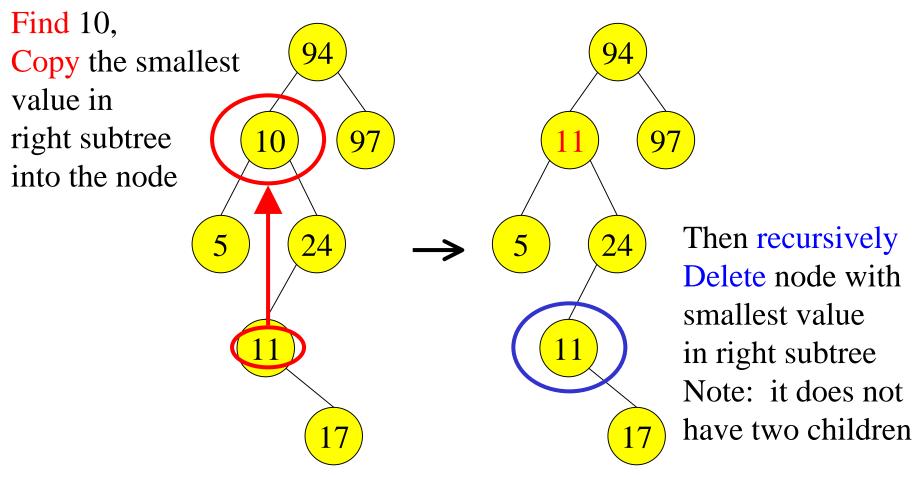
CSE 373 - Data Structures - 7 - Trees Intro

Delete "24" - One child



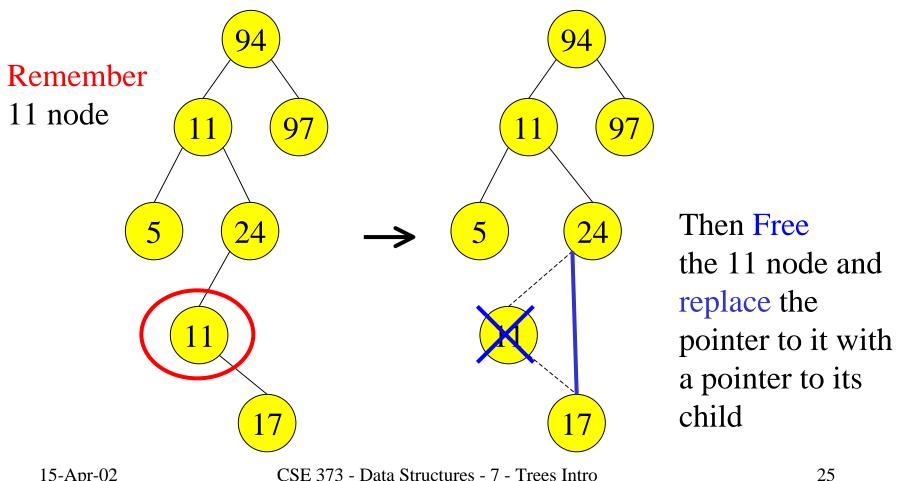
CSE 373 - Data Structures - 7 - Trees Intro

Delete "10" - two children



CSE 373 - Data Structures - 7 - Trees Intro

Delete "11" - One child



15-Apr-02

CSE 373 - Data Structures - 7 - Trees Intro