

Definition and Tree Trivia More Tree Jargon • Length of a path = number depth=0, height = 2• A tree is a set of nodes of edges • that is an empty set of nodes, or • **Depth** of a node N = length • has one node called the root from which zero or of path from root to N more trees (subtrees) descend • **Height** of node N = length $\left(\mathbf{B} \right)$ D • A tree with N nodes always has N-1 edges of longest path from N to a leaf • Two nodes in a tree have at most one path • **Depth of tree** = depth of between them deepest node • **Height of tree** = height of depth = 2, height=0root 15-Apr-02 CSE 373 - Data Structures - 7 - Trees Intro 5 15-Apr-02 CSE 373 - Data Structures - 7 - Trees Intro 6 Implementation of Trees Paths • Can a non-zero path from node N reach • One possible pointer-based Implementation node N again? > tree nodes with value and a pointer to each child • No. Trees can never have cycles (loops) > but how many pointers should we allocate space for? • Does depth of nodes in a non-zero path • A more flexible pointer-based implementation increase or decrease? > 1st Child / Next Sibling List Representation > Depth always increases in a non-zero path > Each node has 2 pointers: one to its first child and one to next sibling > Can handle arbitrary number of children 15-Apr-02 15-Apr-02 CSE 373 - Data Structures - 7 - Trees Intro 7 CSE 373 - Data Structures - 7 - Trees Intro 8

Application: Arithmetic **Expression Trees**

Example Arithmetic Expression:

A + (B * (C / D))

How would you express this as a tree?

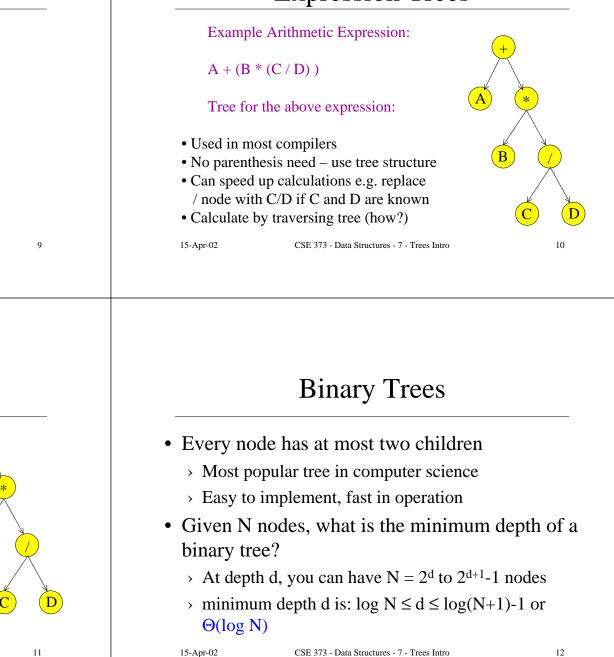
15-Apr-02

CSE 373 - Data Structures - 7 - Trees Intro

Traversing Trees

- Preorder: Node, then Children + A * B / C D
- Inorder: Left child, Node, Right child A + B * C / D
- Postorder: Children, then Node A B C D / * +

Application: Arithmetic **Expression Trees**



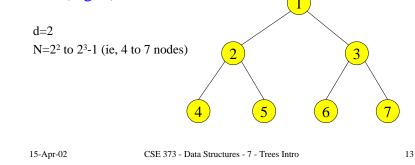
11

B

12

Minimum depth vs node count

- At depth d, you can have $N = 2^d$ to 2^{d+1} -1 nodes
- minimum depth d is $\log N \le d \le \log(N+1)-1$ or $\Theta(\log N)$

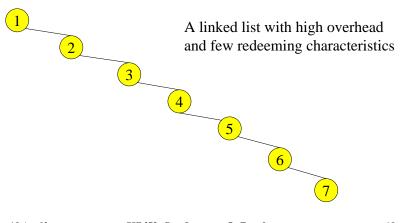


Maximum depth vs node count

- What is the maximum depth of a binary tree?
 - > Degenerate case: Tree is a linked list!
 - > Maximum depth = N-1
- Goal: Would like to keep depth at around log N to get better performance than linked list for operations like Find

CSE 373 - Data Structures - 7 - Trees Intro

A degenerate tree



Binary Search Trees

- Binary search trees are binary trees in which
 - > all values in the node's left subtree are less than node value
 - all values in the node's right subtree are greater than node value
- Operations:
 - > Find, FindMin, FindMax, Insert, Delete

15

14

Operations on Binary Search Trees

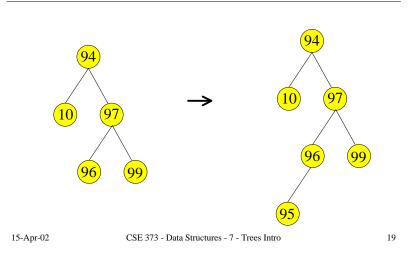
- How would you implement these?
 > Recursive definition of binary search
- trees allows recursive routinesPosition FindMin(Tree T)
- Position FindMax(Tree T)
- Position Find(Tree T, ElementType X)
- Tree Insert(Tree T,ElementType X)
- Tree Delete(Tree T, ElementType X)
- 15-Apr-02

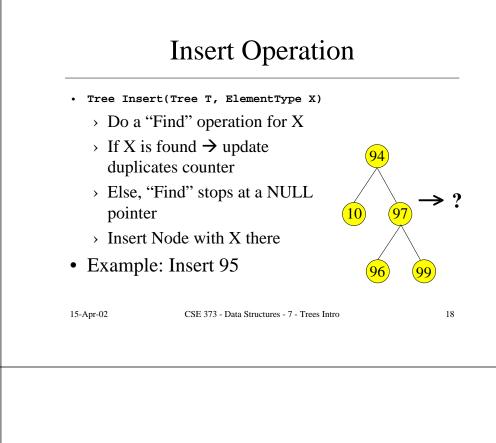
CSE 373 - Data Structures - 7 - Trees Intro

Insert 95

(10)

17

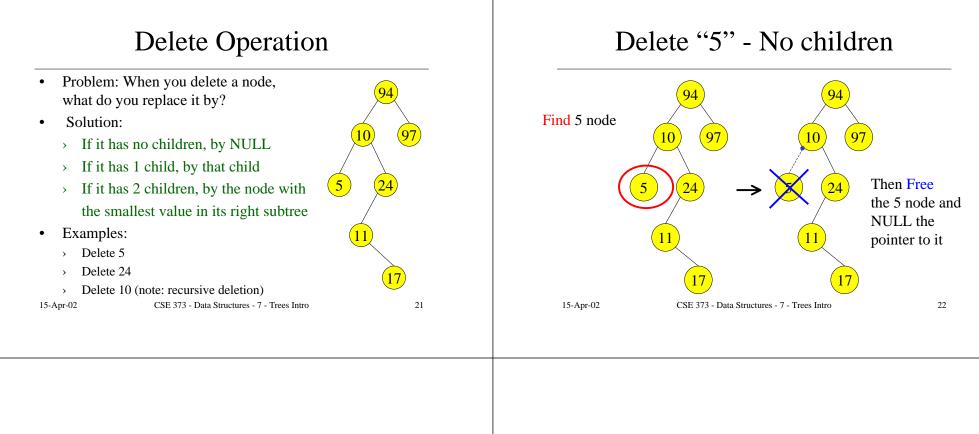




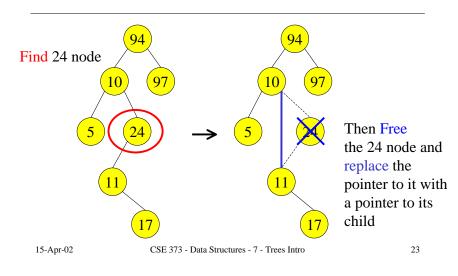
Delete Operation

- Delete is a bit trickier...Why?
- Suppose you want to delete 10
- Strategy:
 - \rightarrow Find 10
 - > Delete the node containing 10
- Problem: When you delete a node, what do you replace it by?

5



Delete "24" - One child



Delete "10" - two children

