Trees - Intro

CSE 373 - Data Structures
April 15, 2002

Readings and References

- Reading
> Chapter 4.1-4.3, Data Structures and Algorithm Analysis in C, Weiss
- Other References

Why Do We Need Trees?

- Lists, Stacks, and Queues are linear relationships
- Information often contains hierarchical relationships
> File directories or folders on your computer
> Moves in a game
, Employee hierarchies in organizations
- Can build a tree to support fast searching

More Tree Jargon

- Length of a path = number of edges
- Depth of a node $\mathrm{N}=$ length of path from root to N
- Height of node $\mathrm{N}=$ length of longest path from N to a leaf
- Depth of tree = depth of deepest node
- Height of tree = height of depth $=0$, height $=2$

depth $=2$, height $=0$ root

Paths

- Can a non-zero path from node N reach node N again?
- No. Trees can never have cycles (loops)
- Does depth of nodes in a non-zero path increase or decrease?
> Depth always increases in a non-zero path

Definition and Tree Trivia

- A tree is a set of nodes
- that is an empty set of nodes, or
- has one node called the root from which zero or more trees (subtrees) descend
- A tree with N nodes always has $\mathrm{N}-1$ edges
- Two nodes in a tree have at most one path between them

Implementation of Trees

- One possible pointer-based Implementation
> tree nodes with value and a pointer to each child
, but how many pointers should we allocate space for?
- A more flexible pointer-based implementation
> $1^{\text {st }}$ Child / Next Sibling List Representation
> Each node has 2 pointers: one to its first child and one to next sibling
> Can handle arbitrary number of children

Application: Arithmetic Expression Trees

Example Arithmetic Expression:

$$
\mathrm{A}+(\mathrm{B} *(\mathrm{C} / \mathrm{D}))
$$

How would you express this as a tree?

Traversing Trees

- Preorder: Node, then Children $+\mathrm{A} * \mathrm{~B} / \mathrm{C}$ D
- Inorder: Left child, Node, Right child A + B * C / D
 ABCD / * +

Application: Arithmetic
 Expression Trees

Example Arithmetic Expression:
$\mathrm{A}+(\mathrm{B} *(\mathrm{C} / \mathrm{D}))$
Tree for the above expression:

- Used in most compilers
- No parenthesis need - use tree structure
- Can speed up calculations e.g. replace
/ node with C/D if C and D are known
- Calculate by traversing tree (how?)

15-Apr-02
CSE 373 - Data Structures - 7 - Trees Intro

10

Binary Trees

- Every node has at most two children
, Most popular tree in computer science
, Easy to implement, fast in operation
- Given N nodes, what is the minimum depth of a binary tree?
, At depth d, you can have $\mathrm{N}=2^{\mathrm{d}}$ to $2^{\mathrm{d}+1}-1$ nodes
, minimum depth d is: $\log \mathrm{N} \leq \mathrm{d} \leq \log (\mathrm{N}+1)$-1 or $\Theta(\log \mathrm{N})$

Minimum depth vs node count

- At depth d, you can have $\mathrm{N}=2^{\mathrm{d}}$ to $2^{\mathrm{d}+1}-1$ nodes
- minimum depth d is $\log \mathrm{N} \leq \mathrm{d} \leq \log (\mathrm{N}+1)$-1 or

15-Apr-02

Maximum depth vs node count

- What is the maximum depth of a binary tree?
> Degenerate case: Tree is a linked list!
> Maximum depth = N-1
- Goal: Would like to keep depth at around $\log N$ to get better performance than linked list for operations like Find

A degenerate tree

Operations on Binary Search

 Trees- How would you implement these?
> Recursive definition of binary search trees allows recursive routines
- Position FindMin(Tree T)
- Position FindMax(Tree T)
- Position Find(Tree T, ElementType X)
- Tree Insert(Tree T,ElementType X)
- Tree Delete(Tree T, ElementType X)

17

Insert Operation

- Tree Insert (Tree T, ElementType X)
> Do a "Find" operation for X
> If X is found \rightarrow update duplicates counter
> Else, "Find" stops at a NULL pointer
> Insert Node with X there
- Example: Insert 95

15-Apr-02

Insert 95

- Delete is a bit trickier...Why?
- Suppose you want to delete 10
- Strategy:
, Find 10
> Delete the node containing 10
- Problem: When you delete a node, what do you replace it by?

Delete Operation

- Problem: When you delete a node, what do you replace it by?
- Solution:
> If it has no children, by NULL
> If it has 1 child, by that child
> If it has 2 children, by the node with the smallest value in its right subtree
- Examples:
, Delete 5
, Delete 24
> Delete 10 (note: recursive deletion)
15-Apr-02

Delete " 5 " - No children

Find 5 node

Delete " 24 " - One child

15-Apr-02

Delete " 10 " - two children

Delete " 11 " - One child

