
Stacks and Queues

CSE 373 - Data Structures
April 12, 2002

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues 2

Readings and References

• Reading
› Section 3.3 and 3.4, Data Structures and Algorithm Analysis in C,

Weiss

• Other References

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues 3

Stacks

• A list for which Insert and
Delete are allowed only at one
end of the list (the top)
› the implementation defines

which end is the "top"
› LIFO – Last in, First out

• Push: Insert element at top
• Pop: Remove and return top

element (aka TopAndPop)

a tray stack

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues 4

Stack ADT
void push(Stack S, ElementType E)

› add an entry to the stack for E
ElementType pop(Stack S)

› remove the top entry from the stack and return it

Stack CreateStack(void)

› create a new, empty stack
void DestroyStack(Stack S)

› release all memory associated with this stack

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues 5

Pointer based Stack implementation

• Linked list with header
• typedef struct ListNode *Stack;

› "Stack" type is a pointer to a List header node
• S->next points to top of stack, the first

node in the List that contains actual data
› the data is of type ElementType

• push(S,ElementType E);

› insert a new node at the start of the list
12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues 6

Pointer based stack elements

Stack S;

value
ignore

next
NULL

malloc(sizeof(struct ListNode));

value
ignore

next value next
NULL

Stack S;
S = CreateStack(100);

push(S,mySym);

Stack S;

name value
nnn

xyzaaa<0>

ListNode

Symbol

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues 7

Pointer based Stack issues

• Potentially a lot of calls to malloc and free
if the stack is actively used
› memory allocation and release require

expensive trips through the operating system
• Relatively elaborate data structure for the

simple push/pop functions performed
› overhead of ListNodes
› insert and delete only take place at one end

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues 8

Pointer based Stack

• Under some circumstances a pointer based
stack can be a good choice

• For example, assume
› a struct Symbol is allocated once for each symbol
› the symbol is used for a long time in various ways
› there is a struct Symbol *next in each struct Symbol

› then you can use the Symbol objects as list nodes and
link / unlink them with no malloc/free needed

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues 9

Stack with BigSymbol nodes

value
ignore

next

Stack S;

BigSymbolheader

afield
ignore

bfield
ignore

cfield
ignore

dfield
ignore

value
nnn

next
BigSymbol

afield
aaa

bfield
bbb

cfield
ccc

dfield
ddd

value
nnn2

next
NULL

BigSymbol

afield
aaa2

bfield
bbb2

cfield
ccc2

dfield
ddd2

List L;

value
ignore

next afield
ignore

bfield
ignore

cfield
ignore

dfield
ignore

top entry on stack

BigSymbolThis list holds "idle" Symbols

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues 10

Array based Stack implementation

• Recall the array implementation of Lists
› Insert and Delete took O(N) time because we

needed to shift elements when operating at an
arbitrary position in the list

• What if we avoid shifting by inserting and
deleting only at the end of the list?
› Both operations take O(1) time!

• Stack: A list for which Insert and Delete are
allowed only at one end of the list (the top)

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues 11

Array based Stack implementation
• An array of ElementType entries

› dynamically allocated array
• typedef struct StackRecord *Stack;

› "Stack" type is a pointer to a Stack data record
• S->current is the array index of the entry at

the top of the stack
› the data is of type ElementType

• push(S,ElementType E);
› add a new entry at the end (top) of the current list

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues 12

Array based Stack elements
struct StackRecord {

int capacity; /* max number of elements */

int current; /* offset to most recently pushed value */

ElementType *buffer; /* pointer to actual stack area */

};

//Empty stack has allocated array and current = -1

AN…A4A3A2A1

capacity-1current…3210

top entry on stack

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues 13

Array based stack create

Stack S;
capacity

100
current

-1

malloc(sizeof(struct StackRecord));

Stack S;
S = CreateStack(100);

buffer

0 1 2 … … 99

malloc(capacity*sizeof(ElementType));

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues 14

Array based stack push

0 1 2 … … 99

Symbol

push(S,mySym);

name value
nnn

xyzaaa<0>

Stack S;

capacity
100

current
0

buffer

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues 15

Array based Stack issues

• The array that is used as the Stack must be
allocated and may be too big or too small
› can dynamically reallocate bigger array on

stack overflow
• Error checking

› who checks for overflow and underflow?
› an array based Stack is so simple that error

checking can be a significant percentage cost
12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues 16

(i + 5*(17 – j/(6*k)) : Balanced?
• Balance Checker using Stack

› create an empty stack and start reading symbols
› If input is an opening symbol, push onto stack
› If input is a closing symbol

• If stack is empty, report error
• Else, Pop the stack

Report error if popped symbol is not corresponding
open symbol

› If EOF and stack is not empty, report error

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues 17

Using a stack for function calls

local variables
for function A

local variables
for function B

local variables
for function C

stack pointer
before call to A

st
ac

k
fr

am
es

stack pointer
before call to B

stack pointer
before call to C

top of stack
while in C

main: myVar = A(x);
in A: k = B(x,2);
in B: z = C(500,tmp);
in C: myVal = a+b;

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues 18

Using a Stack for Arithmetic
• infix notation : a+b*c+(d*e+f)*g

› the operators are between the operands
• postfix notation: abc*+de*f+g*+

› the operators follow the operands
• convert to postfix using a stack

› read the input stream of characters
› output operands as they are seen
› push and pop operators according to priority

• evaluate postfix expression using a stack

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues 19

Queue

• Insert at one end of List, remove at the other
end

• Queues are “FIFO” – first in, first out
• Primary operations are Enqueue and Dequeue
• A queue ensures “fairness”

› customers waiting on a customer hotline
› processes waiting to run on the CPU

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues 20

Queue ADT

• Operations:
› void Enqueue(Queue Q, ElementType E)

• add an entry at the end of the queue

› ElementType Dequeue(Queue Q)
• remove the entry from the beginning of the queue
• aka ElementType FrontAndDequeue(Queue Q)

› int IsEmpty(Queue Q)

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues 21

Queue ADT
• Pointer-based: what pointers do you need to

keep track of for O(1) implementation?
• Array-based: can use List operations Insert

and Delete, but O(N) time due to copying
• How can you make array-based Enqueue and

Dequeue O(1) time?
› Use Front and Rear indices: Rear incremented

for Enqueue and Front incremented for Dequeue

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues 22

Applications of Queues

• File servers: Users needing access to their
files on a shared file server machine are
given access on a FIFO basis

• Printer Queue: Jobs submitted to a printer
are printed in order of arrival

• Phone calls made to customer service
hotlines are usually placed in a queue

