Analysis of Algorithms

CSE 373 - Data Structures
April 10, 2002

Readings and References

- Reading
> Chapter 2, Data Structures and Algorithm Analysis in C, Weiss
- Other References

Asymptotic Behavior

- The "asymptotic" performance as $\mathrm{N} \rightarrow \infty$, regardless of what happens for small input sizes N , is generally most important
- Performance for small input sizes may matter in practice, if you are sure that small N will be common forever
- We will compare algorithms based on how they scale for large values of N

Big-Oh Notation

- Suppose $T(N)=50 N$
, $\mathrm{T}(\mathrm{N})=\mathrm{O}(\mathrm{N})$
> Take $\mathrm{c}=50$ and $\mathrm{n}_{0}=1$
- Suppose T(N) $=50 \mathrm{~N}+11$
, $\mathrm{T}(\mathrm{N})=\mathrm{O}(\mathrm{N})$
> $\mathrm{T}(\mathrm{N}) \leq 50 \mathrm{~N}+11 \mathrm{~N}=61 \mathrm{~N}$ for $\mathrm{N} \geq 1$. So, $\mathrm{c}=61$ and $\mathrm{n}_{0}=1$ works

The common comparisons

CSE 373 - Data Structures - 5 - Analysis of Algorithms

Exponential Growth swamps everything else

Bounds

- Upper bound (O) is not the only bound of interest
- Big-Oh (O), Little-on (o), Omega (Ω), and Theta (Θ) :
(Fraternities of functions...)
Examples of time and space efficiency analysis

Big-Oh and Omega

- $\mathrm{T}(\mathrm{N})=\mathrm{O}(\mathrm{f}(\mathrm{N}))$ iff there are positive constants c and n_{0} such that $\mathrm{T}(\mathrm{N}) \leq \operatorname{cf}(\mathrm{N})$ for $\mathrm{N} \geq \mathrm{n}_{0}$.
, $\mathrm{O}(\mathrm{f}(\mathrm{N})$) is an upper bourd for $\mathrm{T}(\mathrm{N})$
> $100 \log \mathrm{~N}, \mathrm{~N}^{0.9}, 0.0001 \mathrm{~N}, 2^{100} \mathrm{~N}+\log \mathrm{N}$ are $\mathrm{O}(\mathrm{N})$
- $\mathrm{T}(\mathrm{N})=\Omega(\mathrm{f}(\mathrm{N}))$ if theere are positive constants c and n_{0} such that $\mathrm{T}(\mathrm{N}) \geq \mathrm{cf}(\mathrm{N})$ for $\mathrm{N} \geq \mathrm{n}_{0}$.
> $\Omega(\mathrm{f}(\mathrm{N})$) is a lower bound for $\mathrm{T}(\mathrm{N})$
> $2^{\mathrm{N}}, \mathrm{N}^{\log \mathrm{N}}, \mathrm{N}^{1.2}, 0.0001 \mathrm{~N}, \mathrm{~N}+\log \mathrm{N}$ are $\Omega(\mathrm{N})$
10-Apr-02 CSE 373 - Data Structures - 5 - Analysis of Algorithms

Big-Oh Notation

Theta and Little-Oh

- $\mathrm{T}(\mathrm{N})=\Theta(\mathrm{f}(\mathrm{N}))$ iff $\mathrm{T}(\mathrm{N})=\mathrm{O}(\mathrm{f}(\mathrm{N}))$ and $\mathrm{T}(\mathrm{N})=\Omega(\mathrm{f}(\mathrm{N}))$
, $\Theta(\mathrm{f}(\mathrm{N}))$ is a tight bound, upper and lower
> $0.0001 \mathrm{~N}, 2^{100} \mathrm{~N}+\log \mathrm{N}$ are all $=\Theta(\mathrm{N})$
- $T(N)=o(f(N))$ iff $T(N)=O(f(N))$ and $\mathrm{T}(\mathrm{N}) \neq \Theta(\mathrm{f}(\mathrm{N}))$
> $\mathrm{f}(\mathrm{N})$ grows faster than $\mathrm{T}(\mathrm{N})$
> $100 \log \mathrm{~N}, \mathrm{~N}^{0.9}, \operatorname{sqrt}(\mathrm{~N}), 17$ are all $=\mathrm{o}(\mathrm{N})$
10-Apr-02 CSE 373 - Data Structures - 5 - Analysis of Algorithms

For large N and ignoring constant factors

- $\mathrm{T}(\mathrm{N})=\mathrm{O}(\mathrm{f}(\mathrm{N}))$
> means $T(N)$ is less than or equal to $f(N)$
> Upper bound
- $\mathrm{T}(\mathrm{N})=\Omega(\mathrm{f}(\mathrm{N}))$
> means $T(N)$ is greater than or equal to $f(N)$
> Lower bound
- $\mathrm{T}(\mathrm{N})=\Theta(\mathrm{f}(\mathrm{N}))$
> means $\mathrm{T}(\mathrm{N})$ is equal to $\mathrm{f}(\mathrm{N})$
> "Tight" bound, same growth rate
- $\mathrm{T}(\mathrm{N})=\mathrm{o}(\mathrm{f}(\mathrm{N}))$
> means $\mathrm{T}(\mathrm{N})$ is strictly less than $\mathrm{f}(\mathrm{N})$
> Strict upper bound: $f(N)$ grows faster than $T(N)$
10-Apr-02
CSE 373 - Data Structures - 5 - Analysis of Algorithms

Big-Oh Analysis of iterative sum function

Find the sum of the first num integers stored in array \mathbf{v}. Assume num \leq size of v .

```
int sum ( int v[ ], int num) {
    int temp_sum = 0, i;
    for ( i = 0; i < num; i++ )
        i = 0; i < num; i++ ) 
        //1
    return temp_sum;
    }
```

- lines 1,3 , and 4 take fixed (constant) amount of time
- line 2: i goes from 0 to num-1= num iterations
- Running time $=$ constant $+(\text { num })^{*}$ constant $=O$ (num)
- Actually, Θ (num) because there are no fast cases

10-Apr-02
CSE 373 - Data Structures - 5 - Analysis of Algorithms

Big-Oh Analysis of recursive sum function

Recursive function to find the sum of first num integers in \mathbf{v} :

```
int sum ( int v[ ], int num)
    if (num == 0) return 0;
    else return v[num-1] + sum(v,num-1).
    }
```

- Let T (num) be the running time of sum
- Then, T (num) $=$ constant $+\mathrm{T}($ num -1$)$
$\cdot=2 *$ constant $+\mathrm{T}($ num -2$)=\ldots=$ num*constant + constant
$\bullet=\Theta$ (num) (same as iterative algorithm!)

Common Recurrence Relations

- Common recurrence relations in analysis of algorithms:
, $\mathrm{T}(\mathrm{N})=\mathrm{T}(\mathrm{N}-1)+\Theta(1) \Rightarrow \mathrm{T}(\mathrm{N})=\mathrm{O}(\mathrm{N})$
, $\mathrm{T}(\mathrm{N})=\mathrm{T}(\mathrm{N}-1)+\Theta(\mathrm{N}) \Rightarrow \mathrm{T}(\mathrm{N})=\mathrm{O}\left(\mathrm{N}^{2}\right)$
> $\mathrm{T}(\mathrm{N})=\mathrm{T}(\mathrm{N} / 2)+\Theta(1) \Rightarrow \mathrm{T}(\mathrm{N})=\mathrm{O}(\log \mathrm{N})$
, $\mathrm{T}(\mathrm{N})=2 \mathrm{~T}(\mathrm{~N} / 2)+\Theta(\mathrm{N}) \Rightarrow \mathrm{T}(\mathrm{N})=\mathrm{O}(\mathrm{N} \log \mathrm{N})$
, $\mathrm{T}(\mathrm{N})=4 \mathrm{~T}(\mathrm{~N} / 2)+\Theta(\mathrm{N}) \Rightarrow \mathrm{T}(\mathrm{N})=\mathrm{O}\left(\mathrm{N}^{2}\right)$

Big-Oh Analysis of Recursive Algorithms

- To derive, expand the right side and count
- Note: Multiplicative constants matter in recurrence relations:
> $\mathrm{T}(\mathrm{N})=4 \mathrm{~T}(\mathrm{~N} / 2)+\Theta(\mathrm{N})$ is $\mathrm{O}\left(\mathrm{N}^{2}\right)$, not $\mathrm{O}(\mathrm{N} \log \mathrm{N})$!
- You will see these again later
> you will only need to know a few specific relations and their big-oh answers

```
int fib(int N) {
    if (N < O) return 0; //invalid input
    if (N == 0 || N == 1) return 1; //base
        cases
    else return fib(N-1)+fib(N-2);
    }
```

- Running time $\mathrm{T}(\mathrm{N})=$?

Recursion

- Recall the example using Fibonacci numbers

> First two are defined to be 1
> Rest are sum of preceding two
$>\mathrm{F}_{\mathrm{n}}=\mathrm{F}_{\mathrm{n}-1}+\mathrm{F}_{\mathrm{n}-2}(\mathrm{n}>1)$
Leonardo Pisano Fibonacci (1170-1250)
- int fib(int N)
if ($\mathrm{N}<0$) return 0; // time $=1$ for ($\mathrm{N}<0$)
if ($\mathrm{N}=\mathbf{=} 0| | \mathrm{N}==1$) return 1; // time $=3$
else return fib(N-1)+fib(N-2); //T(N-1)+T(N-2)+1 \}
- Running time $\mathrm{T}(\mathrm{N})=\mathrm{T}(\mathrm{N}-1)+\mathrm{T}(\mathrm{N}-2)+5$
- Using $\mathrm{F}_{\mathrm{n}}=\mathrm{F}_{\mathrm{n}-1}+\mathrm{F}_{\mathrm{n}-2}$ we can show by induction that $T(N) \geq F_{N}$. We can also show by induction that $\mathrm{F}_{\mathrm{N}} \geq(3 / 2)^{\mathrm{N}}$
- Therefore, $\mathrm{T}(\mathrm{N}) \geq(3 / 2)^{\mathrm{N}}$
> Exponential running time!

Iterative Fibonacci Function

```
int fib_iter(int N) {
    int fibO = 1, fib1 = 1, fibj = 1;
    if (N < O) return 0; //invalid input
    for (int j = 2; j <= N; j++) { //all fib nos. up to N
        fibj = fibO + fib1;
        fib0 = fib1;
        fib1 = fibj;
        }
    return fibj;
    }
```

- Running time $=$?

Iterative Fibonacci Analysis

```
int fib_iter(int N) {
    int fib0 = 1, fib1 = 1, fibj = 1;
    if (N < O) return 0; //invalid input
    for (int j = 2; j <= N; j++) { //all fib nos. up to N
        fibj = fib0 + fib1;
        fib0 = fib1;
        fib1 = fibj;
        }
    return fibj;
    }
- Running time T(N)= constant+(N-1)\bulletconstant
- T(N) = \Theta(N)
    > Exponentially faster than recursive Fibonacci
```

10-Apr-02

Appendix

Matlab - bigo.m

8 bigo functions
8 calculate and
figure

