Fundamentals

CSE 373 - Data Structures
April 8, 2002



Readings and References

e Reading

> Chapters 1-2, Data Structures and Algorithm Analysis in C, Weiss

e Other References
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Mathematical Background

e Today, we will review:
> Logs and exponents
> Series
> Recursion
> Motivation for Algorithm Analysis
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Powers of 2

e Many of the numbers we use will be powers of 2
e Binary numbers (base 2) are easily represented In
digital computers
> each "bit"iIsaOoral
> 20=1, 21=2, 22=4, 23=8, 24=16, 28=256, ...

> an n-bit wide field can hold 2" positive integers:
e 0<k<20-1
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Unsigned binary numbers

« Each bit position represents a power of 2

* For unsigned numbers in a fixed width field
> the minimum value i1s 0

> the maximum value 1s 2"-1, where n Is the
number of bits in the field

 Fixed field widths determine many limits
> 5 bits = 32 possible values (2° = 32)
> 10 bits = 1024 possible values (210 = 1024)
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Binary, Hex, and Decimal

10
15
16
31

127
255

Ox3
0x9

OxA

OxF

0x10
Ox1F
OxX7F
OxFF
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Logs and exponents

 Definition: log, X =y means x = 2¥
> the log of X, base 2, Is the value y that gives x = 2
> 8=23,s01l0g,8 =3
> 65536= 2%, s0 10g,65536 = 16

 Notice that log,x tells you how many bits are
needed to hold x values
> 8 bits holds 256 numbers: 0 to 28-1 = 0 to 255
> 10g,256 = 8
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2% and log,X
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Example: log,x and tree depth

» 7 items in a binary tree, 3 =|log,7 +1 levels

A

.

1 3 5 I
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Properties of logs (of the
mathematical kind)

* \We will assume logs to base 2 unless
specified otherwise

 log AB=1log A +logB
> A=2109,A and B=2109,B
> AB = 2/09,A ¢ 2l0g,B = 2log,A+log,B

> so log,AB = log,A + log,B

> note: log AB # log Aelog B
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Other log properties

 log A/B=1log A-logB

* log (A®) =B log A

e loglog X <log X< X forall X>0
> log log X =Y means 2% =X

> log X grows slower than X
o called a “sub-linear” function
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Alogisalogisalog

* Any base x log Is equivalent to base 2 log
within a constant factor

log, B =log, B
B = 2098 X" =B
2IogZX)IogXB — 2IogZB
— nlog, x (
X=2 log, xlog, B _ ~log, B
2 =2
log, xlog, B =log, B

lo XB:IOg2B
log, X
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Arithmetic Series

N

o S(N)=1+2+..+N=)i

i=1

e The sum is
> S(1) =1
> S(2)=1+2=3

> S(3)=1+2+3 =6

3

=1
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_ N(N +1)

> Why is this formula useful?
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Quicky Algorithm Analysis

« Consider the following program segment:

for (I=1;1<=N;j I++)
for(j=1;)<=1; J++)
printf(“Hello\n”);

 How many times is “printf” executed?
> Or, How many Hello’s will you see?
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What Is actually being executed?

e The program segment being analyzed:
for 1=1;1<=N, I++)
for J =1;) <=1 J++)
printf(“Hello\n”);

e Inner loop executes “printf” i times in the it"
Iteration

> Jgoes from 1to i

* There are N Iiterations in the outer loop
> 1goesfromltoN

8-Apr-02 CSE 373 - Data Structures - 4 - Fundamentals 16



L_ots of hellos

* Total number of times “printf” Is executed =

N
1+2+3+...:Zi = N(I\;ﬂ)
i=1

e Congratulations - You’ve just analyzed your
first program!

> Running time of the program Is proportional to
N(N+1)/2 for all N

> Proportional to N2
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Recursion

 Classic (bad) example: Fibonacci numbers F,

1,1,2,3,5,8,13,21, 34, . Doo. 2=

> First two are defined to be 1

> Rest are sum of preceding two |
Leonardo Pisano
> Zn = |Iﬂ_1 + Fn-2 (n > ]_) Fibonacci (1170-1250)
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Recursive Procedure for
Fibonacclt Numbers

int fib(int 1) {
1f (1 < 0) return O;

1f (1 == 01| 1 ==1)
return 1;
el se
return fib(i-1)+fib(i-2);
}

» Easy to write: looks like the definition of F,
e But, can you spot the big problem?
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Recursive Calls of Fibonaccl

Procedure
N @D
N-1 @\
T R
s @ | OO

-0 OO @

e Re-computes fib(N-1) multiple times!
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lterative Procedure for Fibonacci

Numbers

Int fib iter(int i) {
int fib0O =1, fibl =1, fibj = 1;
1f (1 < 0) return O;

for (int | =2; ) <=1i; j++) {
fibj = fib0 + fibl;
fib0 = fibl;
fibl = fibj;

}

return fibj;

}
* More variables and more bookkeeping
but avolids repetitive calculations and
saves time.
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Recursion Summary

« Recursion may simplify programming,
but beware of generating large numbers
of calls

> Function calls can be expensive In terms of
time and space

* Be sure to get the base case(s) correct!

» Each step must get you closer to the base
case
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Motivation for Algorithm Analysis

e Suppose you are
given two algos A
and B for solving

5 =

&
a problem =
« The running times .|
Ta(N)and Tg(N) ]
of Aand B as a p—
function of Iinput Input Size N

size N are given Which is better?
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More Motivation

e For large N, the running time of A and B Is:

5000

4500

4000

S5 Now which
(ab)
e W00k _ . 1
E " T A(N) = 50N algorithm would
c 2500 1
2 ol you choose?
1500 F
1000} TB(N) — N2
500
1::. 2-:." 3.1‘- d:ﬂ EII:I EIIZI J:{J E{." E;D i
Input Size N
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Asymptotic Behavior

e The “asymptotic” performance as N — oo,
regardless of what happens for small
Input sizes N, Is generally most important

 Performance for small input sizes may
matter in practice, If you are sure that
small N will be common forever

* \We will compare algorithms based on
how they scale for large values of N
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