Fundamentals

CSE 373 - Data Structures
 April 8, 2002

Readings and References

- Reading
> Chapters 1-2, Data Structures and Algorithm Analysis in C, Weiss
- Other References

Mathematical Background

- Today, we will review:
> Logs and exponents
, Series
> Recursion
> Motivation for Algorithm Analysis

Powers of 2

- Many of the numbers we use will be powers of 2
- Binary numbers (base 2) are easily represented in digital computers
> each "bit" is a 0 or a 1
$>2^{0}=1,2^{1}=2,2^{2}=4,2^{3}=8,2^{4}=16,2^{8}=256, \ldots$
> an n -bit wide field can hold 2^{n} positive integers:
- $0 \leq \mathrm{k} \leq 2^{\mathrm{n}}-1$

Unsigned binary numbers

- Each bit position represents a power of 2
- For unsigned numbers in a fixed width field
> the minimum value is 0
> the maximum value is $2^{\mathrm{n}}-1$, where n is the number of bits in the field
- Fixed field widths determine many limits
> 5 bits $=32$ possible values $\left(2^{5}=32\right)$
> 10 bits $=1024$ possible values $\left(2^{10}=1024\right)$

Binary, Hex, and Decimal

$\begin{aligned} & \stackrel{6}{\stackrel{n}{n}} \\ & N \\ & \infty \\ & \underset{N}{\infty} \end{aligned}$	$\begin{gathered} \infty \\ N \\ N \\ \underset{N}{\\|} \\ \sim \end{gathered}$		$\begin{aligned} & \stackrel{N}{N} \\ & \stackrel{I I}{N} \\ & \sim \end{aligned}$	$\begin{aligned} & 6 \\ & \stackrel{+}{\\|} \\ & \stackrel{1}{N} \end{aligned}$	$\begin{gathered} \infty \\ \aleph_{1}^{\prime \prime} \\ \sim \end{gathered}$	$\begin{gathered} \\| \\ \sim \\ \sim \end{gathered}$	$\begin{gathered} \mathbb{N} \\ \underset{N}{2} \end{gathered}$	$\stackrel{H}{\stackrel{H}{\\|}} \stackrel{1}{\sim}$	Hex_{16}	Decimal ${ }_{10}$
							1	1	0x3	3
					1	0	0	1	0x9	9
					1	0	1	0	0xA	10
					1	1	1	1	0×5	15
				1	0	0	0	0	0x10	16
				1	1	1	1	1	$0 \times 1 \mathrm{~F}$	31
		1	1	1	1	1	1	1	0x7F	127
	1	1	1	1	1	1	1	1	0 xFF	255

Logs and exponents

- Definition: $\log _{2} \mathrm{x}=\mathrm{y}$ means $\mathrm{x}=2^{\mathrm{y}}$
> the \log of x, base 2 , is the value y that gives $x=2^{y}$
> $8=2^{3}$, so $\log _{2} 8=3$
> $65536=2^{16}$, so $\log _{2} 65536=16$
- Notice that $\log _{2} \mathrm{x}$ tells you how many bits are needed to hold x values
> 8 bits holds 256 numbers: 0 to $2^{8}-1=0$ to 255
> $\log _{2} 256=8$

$$
\begin{aligned}
& x=0: .1: 4 \\
& y=2 \wedge^{\wedge} x \\
& \text { plot }\left(x, y, r^{\prime}\right) \\
& \text { hold on } \\
& \text { plot }\left(y, x, g^{\prime}\right) \\
& \text { plot }\left(y, y, b^{\prime}\right)
\end{aligned}
$$

2^{x} and $\log _{2} \mathrm{x}$

$$
\begin{aligned}
& x=0: 10 \\
& y=2 . \wedge x \\
& p l o t\left(x, y, r^{\prime}\right) \\
& \text { hold on } \\
& \text { plot }\left(y, x, g^{\prime}\right) \\
& \text { plot }\left(y, y, b^{\prime}\right)
\end{aligned}
$$

2^{x} and $\log _{2} \mathrm{x}$

Example: $\log _{2} \mathrm{x}$ and tree depth

- 7 items in a binary tree, $3=\left\lfloor\log _{2} 7\right\rfloor+1$ levels

Properties of logs (of the mathematical kind)

- We will assume logs to base 2 unless specified otherwise
- $\log \mathrm{AB}=\log \mathrm{A}+\log \mathrm{B}$
, $A=2^{\log _{2} A}$ and $B=2^{\log _{2} B}$
> $\mathrm{AB}=2^{\log _{2} \mathrm{~A}} \cdot 2^{\log _{2} \mathrm{~B}}=2^{\log _{2} \mathrm{~A}+\log _{2} \mathrm{~B}}$
> so $\log _{2} \mathrm{AB}=\log _{2} \mathrm{~A}+\log _{2} \mathrm{~B}$
$>$ note: $\log \mathrm{AB} \neq \log \mathrm{A} \cdot \log \mathrm{B}$

Other log properties

- $\log \mathrm{A} / \mathrm{B}=\log \mathrm{A}-\log \mathrm{B}$
- $\log \left(\mathrm{A}^{\mathrm{B}}\right)=\mathrm{B} \log \mathrm{A}$
- $\log \log \mathrm{X}<\log \mathrm{X}<\mathrm{X}$ for all $\mathrm{X}>0$
$>\log \log \mathrm{X}=\mathrm{Y}$ means $2^{2^{r}}=X$
, $\log \mathrm{X}$ grows slower than X
- called a "sub-linear" function

A \log is a \log is a \log

- Any base $\mathrm{x} \log$ is equivalent to base $2 \log$ within a constant factor

$$
\begin{aligned}
& B=2^{\log _{2} B} \\
& x=2^{\log _{2} x}
\end{aligned}
$$

$$
\begin{aligned}
\log _{x} B & =\log _{x} B \\
x^{\log _{x} B} & =B \\
\left(2^{\log _{2} x}\right)^{\log _{x} B} & =2^{\log _{2} B} \\
2^{\log _{2} x \log _{x} B} & =2^{\log _{2} B} \\
\log _{2} x \log _{x} B & =\log _{2} B \\
\log _{x} B & =\frac{\log _{2} B}{\log _{2} x}
\end{aligned}
$$

Arithmetic Series

- $S(N)=1+2+\ldots+N=\sum_{i=1}^{N} i$
- The sum is
> $\mathrm{S}(1)=1$
> $\mathrm{S}(2)=1+2=3$
> $S(3)=1+2+3=6$
- $\sum_{i=1}^{N} i=\frac{N(N+1)}{2}$

Why is this formula useful?

Quicky Algorithm Analysis

- Consider the following program segment:

$$
\begin{aligned}
& \text { for }(\mathrm{i}=1 ; \mathrm{i}<=\mathrm{N} ; \mathrm{i}++) \\
& \quad \text { for }(\mathrm{j}=1 ; \mathrm{j}<=\mathrm{i} ; \mathrm{j}++)
\end{aligned}
$$

printf("Hello\n");

- How many times is "printf" executed?
> Or, How many Hello's will you see?

What is actually being executed?

- The program segment being analyzed:
for ($\mathrm{i}=1$; $\mathrm{i}<=\mathrm{N}$; $\mathrm{i}++$)
for ($\mathrm{j}=1 ; \mathrm{j}<=\mathrm{i} ; \mathrm{j}++$) printf("Hello\n");
- Inner loop executes "printf" i times in the $\mathrm{i}^{\text {th }}$ iteration
> j goes from 1 to i
- There are N iterations in the outer loop
> i goes from 1 to N
8-Apr-02
CSE 373 - Data Structures - 4 - Fundamentals

Lots of hellos

- Total number of times "printf" is executed =

$$
1+2+3+\ldots=\sum_{i=1}^{N} i=\frac{N(N+1)}{2}
$$

- Congratulations - You’ve just analyzed your first program!
> Running time of the program is proportional to $\mathrm{N}(\mathrm{N}+1) / 2$ for all N
> Proportional to N^{2}

Recursion

- Classic (bad) example: Fibonacci numbers F_{n}

$$
1,1,2,3,5,8,13,21,34, \ldots 00 \text { 。 }
$$

> First two are defined to be 1
> Rest are sum of preceding two $>\mathrm{F}_{\mathrm{n}}=\mathrm{F}_{\mathrm{n}-1}+\mathrm{F}_{\mathrm{n}-2}(\mathrm{n}>1)$

Leonardo Pisano
Fibonacci (1170-1250)

Recursive Procedure for Fibonacci Numbers

```
int fib(int i) {
    if (i < O) return 0;
    if (i == 0 || i == 1)
        return 1;
        else
        return fib(i-1)+fib(i-2);
        }
```

- Easy to write: looks like the definition of F_{n}
- But, can you spot the big problem?

Recursive Calls of Fibonacci Procedure

- Re-computes fib($\mathrm{N}-\mathrm{i}$) multiple times!

Iterative Procedure for Fibonacci Numbers

```
int fib_iter(int i) {
    int fib0 = 1, fib1 = 1, fibj = 1;
    if (i < 0) return 0;
    for (int j = 2; j <= i; j++) {
                                fibj = fib0 + fib1;
                        fib0 = fib1;
                        fib1 = fibj;
        }
        return fibj;
    }
```

- More variables and more bookkeeping but avoids repetitive calculations and saves time.

Recursion Summary

- Recursion may simplify programming, but beware of generating large numbers of calls
> Function calls can be expensive in terms of time and space
- Be sure to get the base case(s) correct!
- Each step must get you closer to the base case

Motivation for Algorithm Analysis

- Suppose you are given two algos A and B for solving a problem
- The running times $\mathrm{T}_{\mathrm{A}}(\mathrm{N})$ and $\mathrm{T}_{\mathrm{B}}(\mathrm{N})$ of A and B as a function of input

Input Size N
Which is better? size N are given
8-Apr-02

More Motivation

- For large N , the running time of A and B is:

Now which
algorithm would
you choose?

Asymptotic Behavior

- The "asymptotic" performance as $\mathrm{N} \rightarrow \infty$, regardless of what happens for small input sizes N , is generally most important
- Performance for small input sizes may matter in practice, if you are sure that small N will be common forever
- We will compare algorithms based on how they scale for large values of N

