Fundamentals

CSE 373 - Data Structures April 8, 2002

Readings and References

- Reading
 - > Chapters 1-2, Data Structures and Algorithm Analysis in C, Weiss
- Other References

Mathematical Background

- Today, we will review:
 - > Logs and exponents
 - > Series
 - > Recursion
 - > Motivation for Algorithm Analysis

Powers of 2

- Many of the numbers we use will be powers of 2
- Binary numbers (base 2) are easily represented in digital computers
 - > each "bit" is a 0 or a 1
 - > 2⁰=1, 2¹=2, 2²=4, 2³=8, 2⁴=16, 2⁸=256, ...
 - > an n-bit wide field can hold 2^n positive integers:
 - $0 \le k \le 2^n 1$

Unsigned binary numbers

- Each bit position represents a power of 2
- For unsigned numbers in a fixed width field
 - > the minimum value is 0
 - > the maximum value is 2ⁿ-1, where n is the number of bits in the field
- Fixed field widths determine many limits
 - > 5 bits = 32 possible values $(2^5 = 32)$
 - > 10 bits = 1024 possible values ($2^{10} = 1024$)

Binary, Hex, and Decimal

2 ⁸ =256	2 ⁷ =128	2 ⁶ =64	2 ⁵ =32	2 ⁴ =16	2 ³ =8	 2 ² =4	2 ¹ =2	$2^{0}=1$	Hex ₁₆	Decimal ₁₀
		 	 	 		 	1	1	0x3	3
		 			1	0	0	1	0x9	9
		 	 	 	1	0	1	0	0xA	10
		 			1	1	1	1	0xF	15
		 	 	1	0	0	0	0	0x10	16
				1	1	1	1	1	0x1F	31
		1	1	1	1	1	1	1	0x7F	127
	1	1	1	1	1	1	1	1	OxFF	255

CSE 373 - Data Structures - 4 - Fundamentals

Logs and exponents

- Definition: $\log_2 x = y$ means $x = 2^y$
 - > the log of x, base 2, is the value y that gives $x = 2^y$

>
$$8 = 2^3$$
, so $\log_2 8 = 3$

- > $65536 = 2^{16}$, so $\log_2 65536 = 16$
- Notice that $\log_2 x$ tells you how many bits are needed to hold x values
 - > 8 bits holds 256 numbers: 0 to $2^{8}-1 = 0$ to 255
 - $> \log_2 256 = 8$

8-Apr-02

 2^x and $log_2 x$

 2^x and $log_2 x$

Example: log₂x and tree depth

• 7 items in a binary tree, $3 = \lfloor \log_2 7 \rfloor + 1$ levels

CSE 373 - Data Structures - 4 - Fundamentals

Properties of logs (of the mathematical kind)

- We will assume logs to base 2 unless specified otherwise
- $\log AB = \log A + \log B$
 - > $A=2^{\log_2 A}$ and $B=2^{\log_2 B}$
 - $> AB = 2^{\log_2 A} \bullet 2^{\log_2 B} = 2^{\log_2 A + \log_2 B}$
 - $\Rightarrow \text{ so } \log_2 AB = \log_2 A + \log_2 B$
 - > note: $\log AB \neq \log A \cdot \log B$

Other log properties

- $\log A/B = \log A \log B$
- $\log(A^B) = B \log A$
- $\log \log X < \log X < X$ for all X > 0
 - > $\log \log X = Y$ means $2^{2^{Y}} = X$
 - > log X grows slower than X
 - called a "sub-linear" function

A log is a log is a log

• Any base x log is equivalent to base 2 log within a constant factor $\log_{a} B = \log_{a} B$

$$B = 2^{\log_2 B}$$

$$x = 2^{\log_2 x}$$

$$x^{\log_x B} = B$$

$$(2^{\log_2 x})^{\log_x B} = 2^{\log_2 B}$$

$$2^{\log_2 x \log_x B} = 2^{\log_2 B}$$

$$\log_2 x \log_x B = \log_2 B$$

$$\log_x B = \frac{\log_2 B}{\log_2 x}$$

Arithmetic Series

•
$$S(N) = 1 + 2 + \ldots + N = \sum_{i=1}^{N} i$$

- The sum is
 - $\rightarrow S(1) = 1$
 - > S(2) = 1+2 = 3

>
$$S(3) = 1 + 2 + 3 = 6$$

•
$$\sum_{i=1}^{N} i = \frac{N(N+1)}{2}$$
 Why is this formula useful?

Quicky Algorithm Analysis

- Consider the following program segment: for (i = 1; i <= N; i++) for (j = 1; j <= i; j++) printf("Hello\n");
- How many times is "printf" executed?
 - > Or, How many Hello's will you see?

What is actually being executed?

- The program segment being analyzed: for (i = 1; i <= N; i++) for (j = 1; j <= i; j++) printf("Hello\n");
- Inner loop executes "printf" i times in the ith iteration
 - > j goes from 1 to i
- There are N iterations in the outer loop
 - > i goes from 1 to N

Lots of hellos

- Total number of times "printf" is executed = $1+2+3+...=\sum_{i=1}^{N}i=\frac{N(N+1)}{2}$
- Congratulations You've just analyzed your first program!
 - > Running time of the program is proportional to N(N+1)/2 for all N
 - > Proportional to N²

Recursion

• Classic (bad) example: Fibonacci numbers F_n

- > First two are defined to be 1
- > Rest are sum of preceding two
- $F_n = F_{n-1} + F_{n-2} \quad (n > 1)$

Leonardo Pisano Fibonacci (1170-1250)

Recursive Procedure for Fibonacci Numbers

```
int fib(int i) {
    if (i < 0) return 0;
    if (i == 0 || i == 1)
        return 1;
    else
        return fib(i-1)+fib(i-2);
    }</pre>
```

- Easy to write: looks like the definition of F_n
- But, can you spot the big problem?

8-Apr-02

CSE 373 - Data Structures - 4 - Fundamentals

Recursive Calls of Fibonacci Procedure

• Re-computes fib(N-i) multiple times!

CSE 373 - Data Structures - 4 - Fundamentals

Iterative Procedure for Fibonacci Numbers

```
int fib_iter(int i) {
    int fib0 = 1, fib1 = 1, fibj = 1;
    if (i < 0) return 0;
    for (int j = 2; j <= i; j++) {
        fibj = fib0 + fib1;
        fib0 = fib1;
        fib1 = fibj;
    }
    return fibj;
}</pre>
```

• More variables and more bookkeeping but avoids repetitive calculations and saves time.

Recursion Summary

- Recursion may simplify programming, but beware of generating large numbers of calls
 - Function calls can be expensive in terms of time and space
- Be sure to get the base case(s) correct!
- Each step must get you closer to the base case

Motivation for Algorithm Analysis

- Suppose you are given two algos A and B for solving a problem
- The running times $T_A(N)$ and $T_B(N)$ of A and B as a function of input size N are given

8-Apr-02

CSE 373 - Data Structures - 4 - Fundamentals

More Motivation

Asymptotic Behavior

- The "asymptotic" performance as N → ∞, regardless of what happens for small input sizes N, is generally most important
- Performance for small input sizes may matter in practice, if you are <u>sure</u> that <u>small</u> N will be common <u>forever</u>
- We will compare algorithms based on how they scale for large values of N