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Readings and References

• Reading
› Chapters 1-2, Data Structures and Algorithm Analysis in C, Weiss

• Other References

8-Apr-02 CSE 373 - Data Structures - 4 - Fundamentals 3

Mathematical Background

• Today, we will review:
› Logs and exponents
› Series
› Recursion
› Motivation for Algorithm Analysis
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Powers of 2

• Many of the numbers we use will be powers of 2
• Binary numbers (base 2) are easily represented in

digital computers
› each "bit" is a 0 or a 1
› 20=1, 21=2, 22=4, 23=8, 24=16, 28=256, …
› an n-bit wide field can hold 2n positive integers:

•  0 ≤ k ≤ 2n-1
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Unsigned binary numbers

• Each bit position represents a power of 2
• For unsigned numbers in a fixed width field

› the minimum value is 0
› the maximum value is 2n-1, where n is the

number of bits in the field
• Fixed field widths determine many limits

› 5 bits = 32 possible values (25 = 32)
› 10 bits = 1024 possible values (210 = 1024)
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Binary, Hex, and Decimal
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Hex16 Decimal10

1 1 0x3 3

1 0 0 1 0x9 9

1 0 1 0 0xA 10

1 1 1 1 0xF 15

0 0 0 0 0x10 161

1 1 1 1 0x1F 311

1 1 1 1 0x7F 127111

1 1 1 1 0xFF 2551111
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Logs and exponents

• Definition: log2 x = y means x = 2y

› the log of x, base 2, is the value y that gives x = 2y

› 8 = 23, so log28 = 3
› 65536= 216, so log265536 = 16

• Notice that log2x tells you how many bits are
needed to hold x values
› 8 bits holds 256 numbers: 0 to 28-1 = 0 to 255
› log2256 = 8 2x and log2x

x = 0:.1:4
y = 2.^x
plot(x,y,'r')
hold on
plot(y,x,'g')
plot(y,y,'b')



2x and log2x

x = 0:10
y = 2.^x
plot(x,y,'r')
hold on
plot(y,x,'g')
plot(y,y,'b')
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Example: log2x and tree depth

• 7 items in a binary tree, 3 = log27+1 levels

4

2 6

5 71 3
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Properties of logs (of the
mathematical kind)

• We will assume logs to base 2 unless
specified otherwise

• log AB = log A + log B
› A=2log2A and B=2log2B

› AB = 2log2A • 2log2B = 2log2A+log2B

› so log2AB = log2A + log2B

› note: log AB ≠≠≠≠ log A•log B
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Other log properties

• log A/B = log A – log B
• log (AB) = B log A
• log log X < log X < X for all X > 0

› log log X = Y means
› log X grows slower than X

• called a “sub-linear” function

X
Y

=22
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A log is a log is a log
• Any base x log is equivalent to base 2 log

within a constant factor
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Arithmetic Series
•

• The sum is
› S(1) = 1
› S(2) = 1+2 = 3
› S(3) = 1+2+3 = 6

•
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Why is this formula useful?
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Quicky Algorithm Analysis

• Consider the following program segment:
for (i = 1; i <= N; i++)

for (j = 1; j <= i; j++)
printf(“Hello\n”);

• How many times is “printf” executed?
› Or, How many Hello’s will you see?
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What is actually being executed?
• The program segment being analyzed:

for (i = 1; i <= N; i++)
for (j = 1; j <= i; j++)
printf(“Hello\n”);

• Inner loop executes “printf” i times in the ith

iteration
› j goes from 1 to i

• There are N iterations in the outer loop
› i goes from 1 to N
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Lots of hellos

• Total number of times “printf” is executed =

• Congratulations - You’ve just analyzed your
first program!
› Running time of the program is proportional to

N(N+1)/2 for all N
› Proportional to N2
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Recursion
• Classic (bad) example: Fibonacci numbers Fn

1, 1, 2, 3, 5, 8, 13, 21, 34, …

› First two are defined to be 1
› Rest are sum of preceding two
› Fn = Fn-1 + Fn-2  (n > 1)

Leonardo Pisano
Fibonacci (1170-1250)
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Recursive Procedure for
Fibonacci Numbers

int fib(int i) {

if (i < 0) return 0;

if (i == 0 || i == 1)

return 1;

else

return fib(i-1)+fib(i-2);

}

• Easy to write: looks like the definition of Fn

• But, can you spot the big problem?
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Recursive Calls of Fibonacci
Procedure

• Re-computes fib(N-i) multiple times!
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Iterative Procedure for Fibonacci
Numbers

int fib_iter(int i) {
int fib0 = 1, fib1 = 1, fibj = 1;
if (i < 0) return 0;
for (int j = 2; j <= i; j++) {

fibj = fib0 + fib1;
fib0 = fib1;
fib1 = fibj;

}
return fibj;

}

• More variables and more bookkeeping
but avoids repetitive calculations and
saves time.
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Recursion Summary

• Recursion may simplify programming,
but beware of generating large numbers
of calls
› Function calls can be expensive in terms of

time and space
• Be sure to get the base case(s) correct!
• Each step must get you closer to the base

case
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Motivation for Algorithm Analysis
• Suppose you are

given two algos A
and B for solving
a problem

• The running times
TA(N) and TB(N)
of A and B as a
function of input
size N are given

TA

TB

R
un

 T
i m

e

Input Size N

Which is better?
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More Motivation
• For large N, the running time of A and B is:

Now which 

algorithm would 

you choose?R
un

 T
i m

e

Input Size N

TA(N) = 50N

TB(N) = N2
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Asymptotic Behavior

• The “asymptotic” performance as N → ∞,
regardless of what happens for small
input sizes N, is generally most important

• Performance for small input sizes may
matter in practice, if you are sure that
small N will be common forever

• We will compare algorithms based on
how they scale for large values of N


