L1StS

CSE 373 - Data Structures
April 5, 2002

Readings and References

e Reading

> Sections 3.1 - 3.2.8, Data Structures and Algorithm Analysis in C,
Weiss

e Other References

5-Apr-02 CSE 373 - Data Structures - 3 - Lists

Review: Pointers and Memory

* Recall that memory Is a one-dimensional
array of bytes, each with an address

e Pointer variables contain an address

int y, *aP, *DbP; /1l pointer vars use * in declaration
y = 3;

aP = &y;

*aP = 17;

printf("aP: %\n", aP);

printf("*aP = %\n",y); /[l prints out what?
printf("bP: %\n", bP);
*bP = 1; /1 what happens? (hint: DOOM

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 3

Example result

#i ncl ude <stdio. h>

int main(int argc, char *argv[]) {

int y, *aP, *bP; /'l pointer vars use * in declaration
y = 3;

aP = &y,

*aP = 17,

printf("aP: %\n", aP);
printf("*aP = %\n",y);
printf("bP: %\n", bP);
*bP = 1; [l wh
return O;

/[l prints out what?

happens? (hint: DOOM

aP: Oxbffffab4

*aP = 17

bP: 0x8048441

Segnentation fault (core dunped)

5-Apr-02 CSE 373 - Data Structures - 3 - Lists

Review: Memory Management

o Use “malloc” to allocate a specified number
of bytes for new variables

aP = (int *) malloc(sizeof(int));
> Use the sizeof operator to compute the number
of bytes needed for the data type

> malloc does not initialize the memory

 To deallocate memory, use “free” and pass

a pointer to an object allocated with malloc

free(aP);
5-Apr-02 CSE 373 - Data Structures - 3 - Lists 5

List ADT

 What Is a List?
> Ordered sequence of elements A, A,, ..., Ay

* Elements may be of arbitrary type, but all
are the same type

« Common List operations are

> Insert, Find, Delete, IsEmpty, IsLast,
FindPrevious, First, Kth, Last

5-Apr-02 CSE 373 - Data Structures - 3 - Lists

List Implementations

e Two types of Iimplementation:
> Array-Based
> Pointer-Based

5-Apr-02 CSE 373 - Data Structures - 3 - Lists

List: Array Implementation

e Basic ldea:
> Pre-allocate a big array of size MAX_SIZE

> Keep track of current size using a variable
count

> Shift elements when you have to insert or delete

0

1

2

3

count-1

MAX_SIZE-1

A

Ay

As

Ay

An

5-Apr-02

CSE 373 - Data Structures - 3 - Lists

List: Array Implementation

t ypedef struct _Listlinfo (
El ement Type *theArray; //= mall oc(MAX SI ZE*si zeof (El enent Type))
int count; // =0
I nt maxsi ze; [/ =NMAX_SI ZE

}

t ypedef Listlnfo *List;

t ypedef int Position;

/[l Enpty |list has allocated array and count = 0

Need to define: void Insert(List L, ElenentType E, Position P)
/| Exanple: Insert E at position P = 2

4
0 1 2 3 ... | count-1 MAX_ SIZE-1
A | A A, A, | ... Ay

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 9

Array List Insert Operation

e Basic Idea: Insert new item and shift old items to
the right.

void Insert(List L, ElenentType e, Position p) {
Position current;
If (p > L->count || L->count == MAX SIZE) exit(1);
current = L->count;
while (current !'=p) {
L->a[current] = L->a[current-1];
current--;
}
L->a[current] = e;
L- >count ++;

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 10

Array List Insert Running Time

Running time for N elements?

On average, must move half the elements to make
room

Worst case Is Insert at position 0. Must move all
N 1tems down one position before the insert

This i1s O(N) running time.

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 11

List: Pointer Implementation

e Basic ldea:

> Allocate little blocks of memory (nodes) as
elements are added to the list

> Keep track of list by linking the nodes together
> Change links when you want to insert or delete

‘ pL \ node
node
Value Next‘ Next
0—|—> NULL

—>
o—| »| Value
5-Apr-02 CSE 373 - Data Structures - 3 - Lists 12

List: A Pointer Implementation

t ypedef struct Node {
El ement Type Val ue;
struct Node *next;

}

t ypedef struct Node *Li st;

t ypedef struct Node *Position;

/1 Pointer to an enpty list = NULL

void Insert(List *pL, ElenentType E, Position P)

/'l Insert adds new node after the one pointed to by P

[/ 1f Pis NULL or list is enpty (pL=NULL), insert at
begi nning of |ist

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 13

Pointer-Based Linked List

s |
?

\’nOde
node
Value Next‘ Value Next‘

o— > 0.¢

NULL

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 14

List: A Pointer Implementation

/'l Insert adds new node after the one pointed to by P
[/ if Pis NULL or list is enpty, insert at beginning of I|ist

void Insert(List *pL, ElenentType E, Position P)

Position newltem
newl tem = (struct Node *)nall oc(sizeof (struct Node));

Fat al Error Menory(newi t em ;

new t em >Val ue = E;
if (pL == NULL || P == NULL) { //insert at head of I|i st

newl tem >next = pL,;
pL = newltem
}

else { // insert newltemafter the node pointed to by P
newl t em >next = P->next;
P->next = newltem

5-Apr-02 CSE 373 - Data Structures - 3 - Lists

15

Pointer-based Insert Operation

s |
. 4

node
node
Value Next_l

9 %_ Value Next‘
/ =
P NULL
Value | Next
E

Insert the value E after P

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 16

Using a Header Node

* |If the List pointer points to first item, then
> any change in first item changes List itself
> need special checks if List pointer is NULL
> L->next IS Invalid (L is not a Node struct)

 Solution: Use “header node” at beginning of

all lists (see text)

> List pointer always points to header node, which points
to first actual list item

> Simplifies the code, but you need to remember that
there Is an "empty" node at the start of the list

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 17

Linked List with Header Node

s |
?

\header node first actual list node
‘.Value Next‘ >‘ Value Nextl
|
|

v

NULL

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 18

Pointer Implementation Issues

* \WWhenever you break a list, your code should
fix the list up as soon as possible
> Draw pictures of the list to visualize what needs
to be done
 Pay special attention to boundary conditions:
> Empty list
> Single item — same item is both first and last
> Two items — first, last, but no middle items
> Three or more items — first, last, and middle items

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 19

Pointer List Insert Running Time

Running time for N elements?

Insert takes constant time (O(1))

Does not depend on Input size

Compare to array bases list which is O(N)

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 20

Pointer-Based Linked List Delete

s |
?

node
node

Value|] Next ‘

- /> ~ NU¢LL

To delete the node pointed to by P,
need a pointer to the previous node

Value| Next |

P

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 21

Doubly Linked Lists

FindPrev (and hence Delete) Is slow because we
cannot go directly to previous node

« Solution: Keep a "previous" pointer at each node

head prev prev prev

o——»!c o o o—-».ql o

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 22

Double Link Pros and Cons

« Advantage
> Delete and FindPrev are fast like Insert is

 Disadvantages:

> More space used up (double the number of pointers at
each node)

> More book-keeping for updating the two pointers at
each node

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 23

Circularly Linked Lists

 Set the pointer of the last node to first node
Instead of NULL

« Useful when you want to iterate through
whole list starting from any node

> NO need to write special code to wrap around at
the end

 Circular doubly linked lists speed up both
the Delete and Last operations

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 24

Polynomial ADT

 Store and manipulate single variable
polynomials with non-negative exponents

> 10x3+4x°+7 (=10x3+4x2+0xt+7x°)
> Store coefficients C; and exponents |
 ADT operations
> Addition: i] = Ali] + B[i];
> Multiplication: i1+] = i1+] +
ALTT*BL T

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 25

Polynomial Implementation

« Array Implementation: CJi] = C,
> E.g. C[3] =10, C[2] =4, C[1] =0, C[0] =7
e Problem with Array implementation

> High-order sparse polynomials require large
sparse arrays

> E.g. 10X3000 + 4 X2+ 7 - Waste of space and
time (C,; are mostly 0Os)
 Instead, use singly linked lists, sorted In
decreasing order of exponents

5-Apr-02 CSE 373 - Data Structures - 3 - Lists

26

Bucket Sort: Sorting integers

e Bucket sort: N integers in the range 0 to B-1

> Array Count has B elements (“buckets™),
initialized to O

> Given Input integer 1, Count[i]++

> After reading all N numbers go through the B
buckets and read out the resulting sorted list

> N operations to read and record the numbers plus
B operations to recover the sorted numbers

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 27

Radix Sort: Sorting integers

o Radix sort = multi-pass bucket sort of integers
in the range 0 to BP-1

> Bucket-sort from least significant to most
significant "'digit" (base B)

> Use linked list to store numbers that are in same
bucket

> Requires P*(B+N) operations where P Is the
number of passes (the number of base B digits In
the largest possible input number)

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 28

