
Lists

CSE 373 - Data Structures
April 5, 2002

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 2

Readings and References

• Reading
› Sections 3.1 - 3.2.8, Data Structures and Algorithm Analysis in C,

Weiss

• Other References

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 3

Review: Pointers and Memory

• Recall that memory is a one-dimensional
array of bytes, each with an address

• Pointer variables contain an address
int y, *aP, *bP; // pointer vars use * in declaration

y = 3;
aP = &y;
*aP = 17;

printf("aP: %p\n",aP);
printf("*aP = %d\n",y); // prints out what?
printf("bP: %p\n",bP);
*bP = 1; // what happens? (hint: DOOM)

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 4

Example result
#include <stdio.h>
int main(int argc, char *argv[]) {

int y, *aP, *bP; // pointer vars use * in declaration
y = 3;
aP = &y;
*aP = 17;
printf("aP: %p\n",aP);
printf("*aP = %d\n",y); // prints out what?
printf("bP: %p\n",bP);
*bP = 1; // what happens? (hint: DOOM)
return 0;

}

aP: 0xbffffa54
*aP = 17
bP: 0x8048441
Segmentation fault (core dumped)

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 5

Review: Memory Management

• Use “malloc” to allocate a specified number
of bytes for new variables
aP = (int *) malloc(sizeof(int));

› Use the sizeof operator to compute the number
of bytes needed for the data type

› malloc does not initialize the memory
• To deallocate memory, use “free” and pass

a pointer to an object allocated with malloc
free(aP);

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 6

List ADT

• What is a List?
› Ordered sequence of elements A1, A2, …, AN

• Elements may be of arbitrary type, but all
are the same type

• Common List operations are
› Insert, Find, Delete, IsEmpty, IsLast,

FindPrevious, First, Kth, Last

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 7

List Implementations

• Two types of implementation:
› Array-Based
› Pointer-Based

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 8

List: Array Implementation

• Basic Idea:
› Pre-allocate a big array of size MAX_SIZE
› Keep track of current size using a variable
count

› Shift elements when you have to insert or delete

AN…A4A3A2A1

MAX_SIZE-1count-1…3210

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 9

List: Array Implementation
typedef struct _ListInfo (

ElementType *theArray; //= malloc(MAX_SIZE*sizeof(ElementType))
int count; // = 0
int maxsize; //=MAX_SIZE

}
typedef ListInfo *List;
typedef int Position;

//Empty list has allocated array and count = 0

Need to define: void Insert(List L, ElementType E, Position P)
// Example: Insert E at position P = 2

AN…A4A3A2A1

MAX_SIZE-1count-1…3210

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 10

Array List Insert Operation

• Basic Idea: Insert new item and shift old items to
the right.

void Insert(List L, ElementType e, Position p) {
Position current;
if (p > L->count || L->count == MAX_SIZE) exit(1);
current = L->count;
while (current != p) {

L->a[current] = L->a[current-1];
current--;

}
L->a[current] = e;
L->count++;

}

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 11

Array List Insert Running Time

• Running time for N elements?
• On average, must move half the elements to make

room
• Worst case is insert at position 0. Must move all

N items down one position before the insert
• This is O(N) running time.

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 12

List: Pointer Implementation

• Basic Idea:
› Allocate little blocks of memory (nodes) as

elements are added to the list
› Keep track of list by linking the nodes together
› Change links when you want to insert or delete

Value
NULL

pL
node

Value Next

node

Next

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 13

List: A Pointer Implementation
typedef struct Node {

ElementType Value;

struct Node *next;

};

typedef struct Node *List;

typedef struct Node *Position;

// Pointer to an empty list = NULL

void Insert(List *pL, ElementType E, Position P)

// Insert adds new node after the one pointed to by P

// if P is NULL or list is empty (pL=NULL), insert at
beginning of list

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 14

Pointer-Based Linked List

Value

NULL

pL

node
Value Next

node

Next

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 15

List: A Pointer Implementation
// Insert adds new node after the one pointed to by P

// if P is NULL or list is empty, insert at beginning of list

void Insert(List *pL, ElementType E, Position P)

Position newItem;

newItem = (struct Node *)malloc(sizeof(struct Node));

FatalErrorMemory(newItem);

newItem->Value = E;

if (pL == NULL || P == NULL) { //insert at head of list

newItem->next = pL;

pL = newItem;

}

else { // insert newItem after the node pointed to by P

newItem->next = P->next;

P->next = newItem;

}

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 16

Pointer-based Insert Operation

Value

NULL

pL

node
Value Next

node

P

Insert the value E after P

Next

Value
E

Next

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 17

Using a Header Node

• If the List pointer points to first item, then
› any change in first item changes List itself
› need special checks if List pointer is NULL
› L->next is invalid (L is not a Node struct)

• Solution: Use “header node” at beginning of
all lists (see text)
› List pointer always points to header node, which points

to first actual list item
› Simplifies the code, but you need to remember that

there is an "empty" node at the start of the list

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 18

Linked List with Header Node

Value Next

pL

first actual list node
Value
ignore

Next

header node

NULL

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 19

Pointer Implementation Issues

• Whenever you break a list, your code should
fix the list up as soon as possible
› Draw pictures of the list to visualize what needs

to be done
• Pay special attention to boundary conditions:

› Empty list
› Single item – same item is both first and last
› Two items – first, last, but no middle items
› Three or more items – first, last, and middle items

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 20

Pointer List Insert Running Time

• Running time for N elements?
• Insert takes constant time (O(1))
• Does not depend on input size
• Compare to array bases list which is O(N)

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 21

Pointer-Based Linked List Delete

Value Next

pL

node
Value Next

node

P
To delete the node pointed to by P,
need a pointer to the previous node

NULL

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 22

Doubly Linked Lists

• FindPrev (and hence Delete) is slow because we
cannot go directly to previous node

• Solution: Keep a "previous" pointer at each node

head prev prev prev

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 23

Double Link Pros and Cons

• Advantage
› Delete and FindPrev are fast like Insert is

• Disadvantages:
› More space used up (double the number of pointers at

each node)
› More book-keeping for updating the two pointers at

each node

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 24

Circularly Linked Lists

• Set the pointer of the last node to first node
instead of NULL

• Useful when you want to iterate through
whole list starting from any node
› No need to write special code to wrap around at

the end
• Circular doubly linked lists speed up both

the Delete and Last operations

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 25

Polynomial ADT

• Store and manipulate single variable
polynomials with non-negative exponents
› 10x3 + 4x2 + 7 (= 10x3 + 4 x2 + 0 x1 + 7 x0)
› Store coefficients Ci and exponents i

• ADT operations
› Addition: C[i] = A[i] + B[i];

› Multiplication: C[i+j] = C[i+j] +
A[i]*B[j];

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 26

Polynomial Implementation

• Array Implementation: C[i] = Ci
› E.g. C[3] = 10, C[2] = 4, C[1] = 0, C[0] = 7

• Problem with Array implementation
› High-order sparse polynomials require large

sparse arrays
› E.g. 10X3000 + 4 X2+ 7 � Waste of space and

time (Ci are mostly 0s)
• Instead, use singly linked lists, sorted in

decreasing order of exponents

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 27

Bucket Sort: Sorting integers
• Bucket sort: N integers in the range 0 to B-1

› Array Count has B elements (“buckets”),
initialized to 0

› Given input integer i, Count[i]++
› After reading all N numbers go through the B

buckets and read out the resulting sorted list
› N operations to read and record the numbers plus

B operations to recover the sorted numbers

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 28

Radix Sort: Sorting integers
• Radix sort = multi-pass bucket sort of integers

in the range 0 to BP-1
› Bucket-sort from least significant to most

significant "digit" (base B)
› Use linked list to store numbers that are in same

bucket
› Requires P*(B+N) operations where P is the

number of passes (the number of base B digits in
the largest possible input number)

