Lists

CSE 373 - Data Structures
April 5, 2002

Readings and References

» Reading

> Sections 3.1 - 3.2.8, Data Structures and Algorithm Analysis in C,

Weiss

e Other References

5-Apr-02 CSE 373 - Data Structures - 3 - Lists

Review: Pointers and Memory

» Recall that memory is a one-dimensional
array of bytes, each with an address

e Pointer variables contain an address

int y, *aP, *bPp; /1 pointer vars use * in declaration

y = 3;

aP = &y;

*aP = 17;

printf("aP: %\n", aP);

printf("*aP = %\ n",y); /1 prints out what?

printf("bP: %\n", bP);

*bP = 1; /1 what happens? (hint: DOOV
5-Apr-02 CSE 373 - Data Structures - 3 - Lists 3

Example result

#i ncl ude <stdio. h>

int main(int argc, char *argv[]) {

int y, *aP, *bP; /'l pointer vars use * in declaration
y =3

aP = &y;

*aP = 17,

printf("aP: %\n", aP);
printf("*aP = %\ n",y);
printf("bP: %\n", bP);
*bP = 1; /1 wh
return O;

/1 prints out what?

happens? (hint: DOOV

aP: Oxbffffab4

*aP = 17

bP: 0x8048441

Segnent ation fault (core dunped)

5-Apr-02 CSE 373 - Data Structures - 3 - Lists

Review: Memory Management

List ADT

» Use “malloc” to allocate a specified number
of bytes for new variables

aP = (int *) malloc(sizeof(int));
> Use the sizeof operator to compute the number
of bytes needed for the data type

> malloc does not initialize the memory

» To deallocate memory, use “free” and pass

a pointer to an object allocated with malloc
free(aP);

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 5

» What is a List?
> Ordered sequence of elements A}, A,, ..., Ay

» Elements may be of arbitrary type, but all
are the same type

« Common List operations are

> Insert, Find, Delete, ISEmpty, IsLast,
FindPrevious, First, Kth, Last

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 6

List Implementations

List: Array Implementation

» Two types of implementation:
> Array-Based
> Pointer-Based

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 7

 Basic ldea:
> Pre-allocate a big array of size MAX_SIZE

> Keep track of current size using a variable
count

> Shift elements when you have to insert or delete

o | 1] 2 | 3 |..][countl MAX_SIZE-1
ATA A TATT.T A
5-Apr-02 CSE 373 - Data Structures - 3 - Lists 8

List: Array Implementation

typedef struct _Listinfo (
El ement Type *theArray; //= mall oc(MAX_SI ZE*si zeof (El enent Type))
int count; // =0
int maxsize; [//=MAX_SIZE

typedef Listlnfo *List;
typedef int Position;

/1 Empty list has allocated array and count = 0

Need to define: void Insert(List L, ElementType E, Position P)
// Exanple: Insert E at position P = 2

0 1 2 3 ... | count-1 MAX_SIZE-1
Al AL A A Ay
5-Apr-02 CSE 373 - Data Structures - 3 - Lists 9

Array List Insert Operation

« Basic Idea: Insert new item and shift old items to
the right.

void Insert(List L, ElenmentType e, Position p) {
Position current;
if (p > L->count || L->count == MAX_SIZE) exit(1);
current = L->count;
while (current !'=p) {

L->a[current] = L->a[current-1];
current--;
}
L->a[current] = e;
L- >count ++;
}
5-Apr-02 CSE 373 - Data Structures - 3 - Lists 10

Array List Insert Running Time

Running time for N elements?

On average, must move half the elements to make
room

Worst case is insert at position 0. Must move all
N items down one position before the insert

This is O(N) running time.

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 11

List: Pointer Implementation

» Basic ldea:

> Allocate little blocks of memory (nodes) as
elements are added to the list

> Keep track of list by linking the nodes together
> Change links when you want to insert or delete

pL node
(] node
Value| Next
T P4 »| Value| Next
&——» NULL
5-Apr-02 CSE 373 - Data Structures - 3 - Lists 12

List: A Pointer Implementation

typedef struct Node {

Pointer-Based Linked List

El ement Type Val ue; pL
struct Node *next; ®
b
typedef struct Node *List; node
typedef struct Node *Position; node
Value| Next
)) ° »| Value| Next
/1l Pointer to an enpty list = NULL > .__l
void Insert(List *pL, ElenmentType E, Position P)
NULL
/'l Insert adds new node after the one pointed to by P
/1 if Pis NULL or list is enpty (pL=NULL), insert at
begi nning of list
5-Apr-02 CSE 373 - Data Structures - 3 - Lists 13 5-Apr-02 CSE 373 - Data Structures - 3 - Lists 14
/1 Insert adds new node after the one pointed to by P
/1 if Pis NULL or list is enpty, insert at beginning of |ist
pL
void Insert(List *pL, ElenentType E, Position P) ®
Position new tem node d
new tem = (struct Node *)nmall oc(sizeof (struct Node)); valuel Next node
Fat al Error Menory(new ten) ; ®1- % - Value| Next
newl t em >Val ue = E; o—
if (pL == NULL || P == NULL) { //insert at head of Iist / 1
newl t em >next = pL; NULL
= P
pL = new tem Value | Next
else { // insert newWwtemafter the node pointed to by P
new t em >next = P->next;
P->next = newl tem Insert the value E after P
}
5-Apr-02 CSE 373 - Data Structures - 3 - Lists 15 5-Apr-02 CSE 373 - Data Structures - 3 - Lists 16

Using a Header Node

Linked List with Header Node

o |f the List pointer points to first item, then

> any change in first item changes List itself

> need special checks if List pointer is NULL

> L->next isinvalid (L is not a Node struct)
 Solution: Use “header node” at beginning of

all lists (see text)
> List pointer always points to header node, which points
to first actual list item
> Simplifies the code, but you need to remember that
there is an "empty" node at the start of the list

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 17

pL
?
\header node first actual list node
.Value NiXt »| Value| Next
ljgnore > ._j
NULL
5-Apr-02 CSE 373 - Data Structures - 3 - Lists 18

Pointer Implementation Issues

Pointer List Insert Running Time

» Whenever you break a list, your code should
fix the list up as soon as possible
> Draw pictures of the list to visualize what needs
to be done

 Pay special attention to boundary conditions:
Empty list
Single item — same item is both first and last
Two items — first, last, but no middle items

vV VvV VvV Vv

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 19

Three or more items — first, last, and middle items

Running time for N elements?

Insert takes constant time (O(1))

Does not depend on input size

Compare to array bases list which is O(N)

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 20

Pointer-Based Linked List Delete

pL
L 4
\node node
VEILE NiXt »| Value| Next
=
/ NULL
P
To delete the node pointed to by P,
need a pointer to the previous node
5-Apr-02 CSE 373 - Data Structures - 3 - Lists 21

Doubly Linked Lists

FindPrev (and hence Delete) is slow because we
cannot go directly to previous node

Solution: Keep a "previous" pointer at each node

head prev prev rev
[o} [l [e-[l o[-l []
1

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 22

Double Link Pros and Cons

» Advantage
> Delete and FindPrev are fast like Insert is

» Disadvantages:

> More space used up (double the number of pointers at
each node)

> More book-keeping for updating the two pointers at
each node

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 23

Circularly Linked Lists

 Set the pointer of the last node to first node
instead of NULL

 Useful when you want to iterate through
whole list starting from any node

> No need to write special code to wrap around at
the end

o Circular doubly linked lists speed up both
the Delete and Last operations

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 24

Polynomial ADT

« Store and manipulate single variable
polynomials with non-negative exponents
> 10x3+4x2+7 (=103 +4x2+0x1+7x%)
> Store coefficients C; and exponents i

o ADT operations
> Addition: [i] = Ali] + B[i];
> Multiplication: i +j] = Ci+] +

AL T*BL;

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 25

Polynomial Implementation

« Array Implementation: C[i] = C,
> E.g. C[3] =10, C[2] = 4, C[1] =0, C[0] = 7
» Problem with Array implementation

> High-order sparse polynomials require large
sparse arrays
> E.g. 10X3000 + 4 X2+ 7 - Waste of space and
time (C; are mostly 0s)
* Instead, use singly linked lists, sorted in
decreasing order of exponents

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 26

Bucket Sort: Sorting integers

» Bucket sort: N integers in the range 0 to B-1

> Array Count has B elements (“buckets”),
initialized to 0

> Given input integer i, Count[i]++

> After reading all N numbers go through the B
buckets and read out the resulting sorted list

> N operations to read and record the numbers plus
B operations to recover the sorted numbers

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 27

Radix Sort: Sorting integers

 Radix sort = multi-pass bucket sort of integers
in the range 0 to BP-1
> Bucket-sort from least significant to most
significant "digit" (base B)
> Use linked list to store numbers that are in same
bucket

> Requires P*(B+N) operations where P is the
number of passes (the number of base B digits in
the largest possible input number)

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 28

