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CSE 373 - Data Structures
April 5, 2002

Readings and References

» Reading

> Sections 3.1 - 3.2.8, Data Structures and Algorithm Analysis in C,

Weiss

e Other References
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Review: Pointers and Memory

» Recall that memory is a one-dimensional
array of bytes, each with an address

e Pointer variables contain an address

int y, *aP, *bPp; /1 pointer vars use * in declaration

y = 3;

aP = &y;

*aP = 17;

printf("aP: %\n", aP);

printf("*aP = %\ n",y); /1 prints out what?

printf("bP: %\n", bP);

*bP = 1; /1 what happens? (hint: DOOV
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Example result

#i ncl ude <stdio. h>

int main(int argc, char *argv[]) {

int y, *aP, *bP; /'l pointer vars use * in declaration
y =3

aP = &y;

*aP = 17,

printf("aP: %\n", aP);
printf("*aP = %\ n",y);
printf("bP: %\n", bP);
*bP = 1; /1 wh
return O;

/1 prints out what?

happens? (hint: DOOV

aP: Oxbffffab4

*aP = 17

bP: 0x8048441

Segnent ation fault (core dunped)
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Review: Memory Management

List ADT

» Use “malloc” to allocate a specified number
of bytes for new variables

aP = (int *) malloc(sizeof(int));
> Use the sizeof operator to compute the number
of bytes needed for the data type

> malloc does not initialize the memory

» To deallocate memory, use “free” and pass

a pointer to an object allocated with malloc
free(aP);
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» What is a List?
> Ordered sequence of elements A}, A,, ..., Ay

» Elements may be of arbitrary type, but all
are the same type

« Common List operations are

> Insert, Find, Delete, ISEmpty, IsLast,
FindPrevious, First, Kth, Last
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List Implementations

List: Array Implementation

» Two types of implementation:
> Array-Based
> Pointer-Based
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 Basic ldea:
> Pre-allocate a big array of size MAX_SIZE

> Keep track of current size using a variable
count

> Shift elements when you have to insert or delete

o | 1] 2 | 3 |..][countl MAX_SIZE-1
ATA A TATT.T A
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List: Array Implementation

typedef struct _Listinfo (
El ement Type *theArray; //= mall oc(MAX_SI ZE*si zeof (El enent Type))
int count; // =0
int maxsize; [//=MAX_SIZE

typedef Listlnfo *List;
typedef int Position;

/1 Empty list has allocated array and count = 0

Need to define: void Insert(List L, ElementType E, Position P)
// Exanple: Insert E at position P = 2

0 1 2 3 ... | count-1 MAX_SIZE-1
Al AL A A Ay
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Array List Insert Operation

« Basic Idea: Insert new item and shift old items to
the right.

void Insert(List L, ElenmentType e, Position p) {
Position current;
if (p > L->count || L->count == MAX_SIZE) exit(1);
current = L->count;
while (current !'=p) {

L->a[current] = L->a[current-1];
current--;
}
L->a[current] = e;
L- >count ++;
}
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Array List Insert Running Time

Running time for N elements?

On average, must move half the elements to make
room

Worst case is insert at position 0. Must move all
N items down one position before the insert

This is O(N) running time.
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List: Pointer Implementation

» Basic ldea:

> Allocate little blocks of memory (nodes) as
elements are added to the list

> Keep track of list by linking the nodes together
> Change links when you want to insert or delete

pL node
(] node
Value| Next
T P4 »| Value| Next
&——» NULL
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List: A Pointer Implementation

typedef struct Node {

Pointer-Based Linked List

El ement Type Val ue; pL
struct Node *next; ®
b
typedef struct Node *List; node
typedef struct Node *Position; node
Value| Next
) ) ° »| Value| Next
/1l Pointer to an enpty list = NULL > .__l
void Insert(List *pL, ElenmentType E, Position P)
NULL
/'l Insert adds new node after the one pointed to by P
/1 if Pis NULL or list is enpty (pL=NULL), insert at
begi nning of list
5-Apr-02 CSE 373 - Data Structures - 3 - Lists 13 5-Apr-02 CSE 373 - Data Structures - 3 - Lists 14
/1 Insert adds new node after the one pointed to by P
/1 if Pis NULL or list is enpty, insert at beginning of |ist
pL
void Insert(List *pL, ElenentType E, Position P) ®
Position new tem node d
new tem = (struct Node *)nmall oc(sizeof (struct Node)); valuel Next node
Fat al Error Menory(new ten) ; ®1- % - Value| Next
newl t em >Val ue = E; o—
if (pL == NULL || P == NULL) { //insert at head of Iist / 1
newl t em >next = pL; NULL
= P
pL = new tem Value | Next
else { // insert newWwtemafter the node pointed to by P
new t em >next = P->next;
P->next = newl tem Insert the value E after P
}
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Using a Header Node

Linked List with Header Node

o |f the List pointer points to first item, then

> any change in first item changes List itself

> need special checks if List pointer is NULL

> L->next isinvalid (L is not a Node struct)
 Solution: Use “header node” at beginning of

all lists (see text)
> List pointer always points to header node, which points
to first actual list item
> Simplifies the code, but you need to remember that
there is an "empty" node at the start of the list
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pL
?
\header node first actual list node
.Value NiXt »| Value| Next
ljgnore > ._j
NULL
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Pointer Implementation Issues

Pointer List Insert Running Time

» Whenever you break a list, your code should
fix the list up as soon as possible
> Draw pictures of the list to visualize what needs
to be done

 Pay special attention to boundary conditions:
Empty list
Single item — same item is both first and last
Two items — first, last, but no middle items

vV VvV VvV Vv
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Three or more items — first, last, and middle items

Running time for N elements?

Insert takes constant time (O(1))

Does not depend on input size

Compare to array bases list which is O(N)

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 20




Pointer-Based Linked List Delete

pL
L 4
\node node
VEILE NiXt »| Value| Next
=
/ NULL
P
To delete the node pointed to by P,
need a pointer to the previous node
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Doubly Linked Lists

FindPrev (and hence Delete) is slow because we
cannot go directly to previous node

Solution: Keep a "previous" pointer at each node

head prev prev rev
[o} [l [e-[l o[-l []
1

5-Apr-02 CSE 373 - Data Structures - 3 - Lists 22

Double Link Pros and Cons

» Advantage
> Delete and FindPrev are fast like Insert is

» Disadvantages:

> More space used up (double the number of pointers at
each node)

> More book-keeping for updating the two pointers at
each node
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Circularly Linked Lists

 Set the pointer of the last node to first node
instead of NULL

 Useful when you want to iterate through
whole list starting from any node

> No need to write special code to wrap around at
the end

o Circular doubly linked lists speed up both
the Delete and Last operations
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Polynomial ADT

« Store and manipulate single variable
polynomials with non-negative exponents
> 10x3+4x2+7 (=103 +4x2+0x1+7x%)
> Store coefficients C; and exponents i

o ADT operations
> Addition: [ i] = Ali] + B[i];
> Multiplication: i +j] = Ci+] +

AL T*BL;
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Polynomial Implementation

« Array Implementation: C[i] = C,
> E.g. C[3] =10, C[2] = 4, C[1] =0, C[0] = 7
» Problem with Array implementation

> High-order sparse polynomials require large
sparse arrays
> E.g. 10X3000 + 4 X2+ 7 - Waste of space and
time (C; are mostly 0s)
* Instead, use singly linked lists, sorted in
decreasing order of exponents
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Bucket Sort: Sorting integers

» Bucket sort: N integers in the range 0 to B-1

> Array Count has B elements (“buckets”),
initialized to 0

> Given input integer i, Count[i]++

> After reading all N numbers go through the B
buckets and read out the resulting sorted list

> N operations to read and record the numbers plus
B operations to recover the sorted numbers
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Radix Sort: Sorting integers

 Radix sort = multi-pass bucket sort of integers
in the range 0 to BP-1
> Bucket-sort from least significant to most
significant "digit" (base B)
> Use linked list to store numbers that are in same
bucket

> Requires P*(B+N) operations where P is the
number of passes (the number of base B digits in
the largest possible input number)
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