
Pointers and Objects

CSE 373 - Data Structures
April 3, 2002

3-Apr-02 CSE 373 - Data Structures - 2 - Pointers 2

Readings and References

• Reading

• Other References
› Pointers and Memory, by Parlante

› Chapters 5 and 6, The C Programming Language, Kernighan and
Ritchie

3-Apr-02 CSE 373 - Data Structures - 2 - Pointers 3

What is a pointer?

• A pointer is a reference to another item
› the other item is sometimes called the "pointee"
› the pointee is often a variable
› the pointee can also be a function (a procedure)

• The contents of a pointer tell you where to
look in order to find the object of interest

• The declaration of the pointer says what it is
supposed to point to

3-Apr-02 CSE 373 - Data Structures - 2 - Pointers 4

Some declarations
int num; /* an integer */

int *numP; /* pointer to integer */

double sum; /* a double value */

double *sumP; /* pointer to double */

struct Symbol mySym; /* a Symbol */

struct Symbol *symP /* pointer to Symbol */

3-Apr-02 CSE 373 - Data Structures - 2 - Pointers 5

Reference and dereference

• Use "&" operator to take the address of a
variable and store it in a pointer variable
› numP = #

› sumP = ∑

› symP = &mySym;

• Then use "*" operator to dereference a pointer
› *numP = 42 is the same as num = 42

› *sumP = 17.0 is the same as sum = 17.0

› (*symP).val = 2 is the same as mySym.val = 2

3-Apr-02 CSE 373 - Data Structures - 2 - Pointers 6

Pointers and Pointees

numP = #
sumP = ∑
symP = &mySym;

*numP = 42;
*sumP = 17.0;
(*symP).val = 2;

printf("%i %3.1f %lu\n",num,sum,mySym.val);
printf("%i %3.1f %lu\n",*numP,*sumP,(*symP).val);

42 17.0 2
42 17.0 2

3-Apr-02 CSE 373 - Data Structures - 2 - Pointers 7

Example from Pointers & Memory

A simple int variable.
The current value is the
integer 42. This variable
also plays the role of
pointee for the pointer
numP below.

A pointer variable. The
current value is a reference
to the pointee num above.

42

&numnumP

num

3-Apr-02 CSE 373 - Data Structures - 2 - Pointers 8

What form does data take?

• Integers
› -1, 0, 255, 65535, ...

• Floating point
› 1.5, 3.14159, 1E75, …

• character strings
› "abc", "def"

• and that was about it in the old days

3-Apr-02 CSE 373 - Data Structures - 2 - Pointers 9

But real data is more complex

• Airplane definition
› engine count, crew count, passenger capacity,

range, operating cost per seat mile, …
• Student record

› name, student id, major, school address, home
address, credits to date, current enrollment, …

• Major fields of study
› responsible department, curriculum, students, ...

3-Apr-02 CSE 373 - Data Structures - 2 - Pointers 10

Why have structs?

• Because the logical
objects that you use in
your programs are more
complex than just a
single int or double value

• A structured block lets
you manipulate related
data as one element

struct Symbol {
char *name;
unsigned long val;

};

struct Symbol oneSym;
struct Symbol twoSym;
struct Symbol mySym;

oneSym.name = "one";
oneSym.val = 1;

twoSym.name = "two";
twoSym.val = oneSym.val+1;

3-Apr-02 CSE 373 - Data Structures - 2 - Pointers 11

What is a struct variable?

• A single variable
declared as a struct
refers to a particular
block of memory

• the individual fields
are at fixed offsets
from the start of the
block

char *

unsigned long

char *

unsigned long

oneSym

twoSym

char *

unsigned long

mySym

3-Apr-02 CSE 373 - Data Structures - 2 - Pointers 12

What can you do with a struct?

• The legal operations on
a structure are
› accessing its members
› copying it or assigning

to it as a unit
› taking its address with &

struct Symbol oneSym;
struct Symbol twoSym;
struct Symbol mySym;

oneSym.name = "one";
oneSym.val = 1;

twoSym.name = "two";
twoSym.val = oneSym.val+1;

mySym = twoSym;

3-Apr-02 CSE 373 - Data Structures - 2 - Pointers 13

How can structs be costly?

• Copying a struct is a nice automatic feature
› but it can lead to a lot of copying

• Our Symbol structs only require a few bytes
› but imagine the size of some of the other

examples - airplanes, student records,
department descriptions

• Copying complete structs can get very
costly very quickly

3-Apr-02 CSE 373 - Data Structures - 2 - Pointers 14

Pointers to the rescue

• Take the address of a struct variable and
store it in a pointer variable

• Then you can manipulate the pointers,
leaving the original data where it is and just
moving pointer values around

• An array of pointer values is one way to
define a list of objects (struct variables)

3-Apr-02 CSE 373 - Data Structures - 2 - Pointers 15

A short array of Symbol pointers

Symbol *

Symbol *

char *

unsigned long

char

char *

unsigned long

char

3-Apr-02 CSE 373 - Data Structures - 2 - Pointers 16

Pointers allow you to link objects

Node *next

Symbol *element

char *

unsigned long

Node *next

Symbol *element

char *

unsigned long

Node *next

Symbol *element

char *

unsigned long

struct Node {
struct Node *next;
struct Symbol *element;

};

struct Node *nodeA;
struct Node *nodeB;
struct Node *nodeC;

nodeB nodeC

oneSym

twoSym

threeSym

nodeA

nodeA = malloc(sizeof(struct Node));
FatalErrorMemory(nodeA);

nodeB = malloc(sizeof(struct Node));
FatalErrorMemory(nodeB);

nodeC = malloc(sizeof(struct Node));
FatalErrorMemory(nodeC);

(*nodeA).next = nodeB;
(*nodeA).element = &oneSym;

nodeB->next = nodeC;
nodeB->element = &twoSym;

nodeC->next = NULL;
nodeC->element = &threeSym;

nodeP = nodeA;
while (nodeP != NULL) {

printf("%p (%s) points to %p\n",
nodeP,nodeP->element->name,nodeP->next);

nodeP = nodeP->next;
}

0x80498f0 (one) points to 0x8049900
0x8049900 (two) points to 0x8049910
0x8049910 (three) points to (nil)

Three Linked Nodes

3-Apr-02 CSE 373 - Data Structures - 2 - Pointers 18

Structure of Homework

• Each programming project will require you
to implement a small set of functions to
implement the particular data type

• You will be given main.c and a header file
describing the functions to implement
› based very closely on the functions in the book

• You are also supplied with some utility
headers

3-Apr-02 CSE 373 - Data Structures - 2 - Pointers 19

Sum is an example homework

• If Sum had been given as a homework you
would have gotten
› mainSum.c - the driver
› sum.h - the function prototype
› element.h - utility header for ElementType
› reporter.h - simple error reporting macros

• You would have written sum.c
› implement the sum function for Symbol objects

3-Apr-02 CSE 373 - Data Structures - 2 - Pointers 20

sum for ints (from first lecture)

• Find the sum of the first num integers
stored in an array v.

int sum(int v[], int num){

int temp_sum, i;

temp_sum = 0;

for (i = 0; i < num; i++)

temp_sum += v[i] ;

return temp_sum;

}

3-Apr-02 CSE 373 - Data Structures - 2 - Pointers 21

sum for ElementType objects

• Note that sum uses the function pointed to
by parameter gv to get the value from each
item pointed to by the pointer entries in v[]

#include "element.h"
#include "sum.h"
int sum(ElementType v[], int num, ElementGetValue gv) {

int temp_sum;
int i;
temp_sum = 0;
for (i=0; i<num; i++) {

temp_sum += (int)(*gv)(v[i]);
}
return temp_sum;

}

3-Apr-02 CSE 373 - Data Structures - 2 - Pointers 22

element.h

• ElementType is a pointer to a data object
• ElementPrintLabel, ElementGetValue, and

Comparator are all functions
• void * is cast to the proper type in each

function depending on the implementation

typedef void *ElementType;
typedef void ElementPrintLabel(ElementType e);
typedef unsigned long ElementGetValue(ElementType e);
typedef int Comparator(ElementType a, ElementType b);

3-Apr-02 CSE 373 - Data Structures - 2 - Pointers 23

reporter.h

• Macros that provide message and exit for
memory allocation errors, bounds checks, and
functions that return NULL if object not found

#define FatalErrorMemory(var) \
if ((var)==NULL) {printf("Fatal Error - Memory …

#define FatalErrorBound(v,b) \
if ((v)>(b)) {printf("Fatal Error - Bound …

#define FatalErrorObjectNotFound(v,b) \
if ((v)==NULL) {printf("Fatal Error - \"%s\" Not Found …

