Topological Sort

CSE 373
Data Structures
Lecture 19

Readings and References

* Reading

> Section 9.2

Some slides based on: CSE 326 by S. Wolfman, 2000

11/27/02 Topological Sort - Lecture 19 2

Topological Sort

Problem: Find an order in
which all these courses can
be taken.

Example: 142 143 378
370 321 341 322
326 421 401

In order to take a course, you must
take all of its prerequisites first

11/27/02 Topological Sort - Lecture 19

Topological Sort

Given a digraph G = (V, E), find a linear ordering of
its vertices such that:

for any edge (v, w) in E, v precedes w in the ordering

®
© ®

11/27/02 Topological Sort - Lecture 19 4

Topo sort - good example

is a valid solution

Any linear ordering in which
all the arrows go to the right

® &
(BB (®|CHDKE)

Note that F can go anywhere in this list because it is not connected.

11/27/02 Topological Sort - Lecture 19

Topo sort - bad example

Any linear ordering in which
@ an arrow goes to the left

is not a valid solution

® «
[enciclolcle]

11/27/02 Topological Sort - Lecture 19 6

Not all can be Sorted

» Adirected graph with a cycle cannot be
topologically sorted.

11/27/02 Topological Sort - Lecture 19 7

Cycles

» Given a digraph G = (V,E), acycleis a
sequence of vertices v,,v,, ...,v, such
that

> k<1
> V1= Vi
> (ViVig) in Eforl <i<k.
» Gis acyclic if it has no cycles.

11/27/02 Topological Sort - Lecture 19 8

Topo sort algorithm - 1

Step 1: Identify vertices that have no incoming edges
* The “in-degree” of these vertices is zero

1/ s
®

11/27/02 Topological Sort - Lecture 19 9

Topo sort algorithm - 1la

Step 1: Identify vertices that have no incoming edges
« If no such vertices, graph has only cycle(s) (cyclic graph)
* Topological sort not possible — Halt.

'd

Example of a cyclic graph

11/27/02 Topological Sort - Lecture 19 10

Topo sort algorithm - 1b

Step 1: Identify vertices that have no incoming edges
* Select one such vertex

Select
o

s
@

11/27/02 Topological Sort - Lecture 19 11

Topo sort algorithm - 2

Step 2: Delete this vertex of in-degree 0 and all
its outgoing edges from the graph. Place it in the
output.

®@ =» @

'

11/27/02 Topological Sort - Lecture 19 12

Continue until done

Repeat Step 1 and Step 2 until graph is empty

Select
by

@ =0

11/27/02 Topological Sort - Lecture 19 13

B

Select B. Copy to sorted list. Delete B and its edges.

@ =» 06

11/27/02 Topological Sort - Lecture 19 14

C

Select C. Copy to sorted list. Delete C and its edges.

//// 31. = (a0
)

11/27/02 Topological Sort - Lecture 19 15

D

Select D. Copy to sorted list. Delete D and its edges.

® = ABleD

11/27/02 Topological Sort - Lecture 19 16

E, F

Select E. Copy to sorted list. Delete E and its edges.
Select F. Copy to sorted list. Delete F and its edges.

= AECDEEFE

11/27/02 Topological Sort - Lecture 19 17

Done

Remove from algorithm
and serve.

11/27/02 Topological Sort - Lecture 19 18

Implementation

Assume adjacency list
representation

sy AT
= g 14
3| a5
4| 517
Translaton 1 2 3 4 5 6 e value next
artay o4 T
11/27/02 Topological Sort - Lecture 19 19

Calculate In-degrees

D A
o] [2T =HalA
1] 2 [{814
In-Degree — 11| 3= = n
array 2] 4| 7 15]
12| 514
19 & k]
11/27/02 Topological Sort - Lecture 19 20

Calculate In-degrees

for i 1tondo D] :=0; endfor
for i 1ton do
x = Ail;
while x # null do
D x.val ue] := D[x.value] + 1;
X 1= X.next;
endwhi l e
endf or

11/27/02 Topological Sort - Lecture 19 21

Maintaining Degree O Vertices

Key idea: Initialize and maintain a queue (or stack)
of vertices with In-Degree 0 p

A
[o] + 224
Queue @ Bk E n
1] 3 [gfa[51
@/@\’ ® |2+ [{504
\@é@é 2| s |
o] s 11
11/27/02 Topological Sort - Lecture 19 22

Topo Sort using a Queue

After each vertex is output, when updating In-Degree array,
enqueue any vertex whose In-Degree becomes zero

Qeue [6] b
dequeuel enqu;Q
Qut put

=]

GRS
&l
N

NN

N LT

o O A~ W N P

EISEEEIEY

11/27/02 Topological Sort - Lecture 19 23

Topological Sort Algorithm

1. Store each vertex’s In-Degree in an array D
Initialize queue with all “in-degree=0" vertices
3. While there are vertices remaining in the
queue:
(a) Dequeue and output a vertex
(b) Reduce In-Degree of all vertices adjacent to it by 1

(c) Enqueue any of these vertices whose In-Degree
became zero

4. If all vertices are output then success,
otherwise there is a cycle.

11/27/02 Topological Sort - Lecture 19 24

n

Some Detail

Mai n Loop
whi l e not Enpty(Q do
x := Dequeue(Q
Qut put (x)
y i= AX];
while y = null do
Dly.value] := Dly.value] - 1;
if Dy.value] = 0 then Enqueue(Qy.value);

y 1= y.next;
endwhil e
endwhil e

11/27/02 Topological Sort - Lecture 19 25

Topological Sort Analysis

« Initialize In-Degree array: O(|V| + |E|)
« Initialize Queue with In-Degree 0 vertices: O(|V|)
» Dequeue and output vertex:
> |V| vertices, each takes only O(1) to dequeue and
output: O(|V])
» Reduce In-Degree of all vertices adjacent to a vertex
and Enqueue any In-Degree 0 vertices:
> O(IE]
» For input graph G=(V,E) run time = O(|V| + |E|)
> Linear time!
11/27/02 Topological Sort - Lecture 19 26

