Graph Introduction

CSE 373
Data Structures
Lecture 18



Reading

 Reading

> Section 9.1

11/25/02 Graph Introduction - Lecture 18



What are graphs?

* Yes, thisis a graph...
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e But we are interested In a different kind of
“graph’”
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Graphs

 Graphs are composed of
> Nodes (vertices)
> Edges node

o

edge
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Varieties

 Nodes
> Labeled or unlabeled
 Edges
> Directed or undirected
> Labeled or unlabeled
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Motivation for Graphs

node node

Consider the data structures we have

looked at so far...
Linked list: nodes with 1 incoming o
edge + 1 outgoing edge

Binary trees/heaps: nodes with 1 @
Incoming edge + 2 outgoing edges

Binomial trees/B-trees: nodes with 1

iIncoming edge + multiple outgoing
edges 19 ©7

Up-trees: nodes with multiple
Incoming edges + 1 outgoing edge e

%) (9
Ol00
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Motivation for Graphs

e What Is common among these data
structures?

« How can you generalize them?

e Consider data structures for representing
the following problems...
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CSE Course Prerequisites at

Nodes = courses
Directed edge = prerequisite



Representing a Maze
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Nodes = rooms
Edge = door or passage
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Representlng Electrical

Battery | > Switch
|

Nodes = battery, switch, resistor, etc.

Edges = connections Resistor
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Program statements

X1=q+y*z
X2=y*z-(Q

y*z calculated twice

common

subexpression G
eliminated: @

Nodes = symbols/operators
Edges = relationships
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Precedence

S, a=0; 5

S, b=1;

S, c=a+l

S, d=b+a;

S: e=d+1;

Sq e=c+d;
Which statements must execute before S;? 3
S.,,S,, S5, S,

Nodes = statements
Edges = precedence requirements 1
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Information Transmission Iin a
Computer Network

== Tokyo Seattle
Seoul EEE | 128
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Sydney

Nodes = computers
Edges = transmission rates
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Traffic Flow on Highways
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Soap Opera Relationships

Victgr/\ Michelle
\/Ashley \
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Six Degrees of Separation
from Kevin Bacon

Where’s my Oscar?

Apollo @

Sinise

Rosanna

_ Arquette
Robin
Wright
The Desperately
Forest Princess Seeking Susan

Gump Bride

Laurie
Wallace Metcalf
Shawn



Six Degrees of Separation
from Kevin Bacon

Rosanna
Arquette

11/25/02



Niche overlaps

Raccoon o
Hawk

Opossum Cr ow

Squirrel

Wbodpecker
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Graph Definition

e A graph is simply a collection of nodes plus
edges
> Linked lists, trees, and heaps are all special cases
of graphs
 The nodes are known as vertices (node =
“vertex”)
 Formal Definition: A graph G is a pair (V, E)
where
> VIS a set of vertices or nodes
> E Is a set of edges that connect vertices
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Graph Example

 Here is a directed graph G = (V, E)
> Each edge Is a pair (v, V,), where v,, v, are vertices
inV
V={A B, C,D,E,F
E ={(A.B), (AD), (B,C), (C,D), (C,E), (D,E)}

A . 7
) E -
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Directed vs Undirected
Graphs

 If the order of edge pairs (v, v,) matters, the graph is
directed (also called a digraph): (vq, V,) # (V,, V)

§__®

 If the order of edge pairs (v, v,) does not matter, the
graph is called an undirected graph: in this case, (v,,

Vp) = (v, Vy)
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Undirected Terminology

e Two vertices u and v are adjacent in an
undirected graph G if {u,v} is an edge in G

> edge e = {u,v} is incident with vertex u and vertex
Y

 The degree of a vertex in an undirected graph
IS the number of edges Incident with it

> a self-loop counts twice (both ends count)
> denoted with deg(v)
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Undirected Terminology

(A,B) is incident B is adjacent to C and C is adjacent to B

to Aandto B

Degree =0

Degree =3
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Directed Terminology

e Vertex u Is adjacent to vertex v in a directed
graph G if (u,v) Is an edge In G
> vertex u is the initial vertex of (u,v)
 Vertex v is adjacent from vertex u
> vertex v is the terminal (or end) vertex of (u,v)
 Degree

> In-degree is the number of edges with the vertex
as the terminal vertex

> out-degree is the number of edges with the vertex
as the initial vertex
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Directed Terminology

11/25/02

B adjacent to C and C adjacent from B
Q G In-degree =0

In-degree = 2 Out-degree = 1
Out-degree =1
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Handshaking Theorem

e Let G=(V,E) be an undirected graph with
|E|=e edges
* Then 2e=>) deg(v)
 Every edgéevcontributes +1 to the degree of
each of the two vertices it is incident with
> number of edges is exactly half the sum of deg(v)

> the sum of the deg(v) values must be even
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Graph Representations

Space and time are analyzed in terms of:
 Number of vertices = |V| and
 Number of edges = |E|

There are at least two ways of representing
graphs:

« The adjacency matrix representation

« The adjacency list representation
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Adjacency Matrix

A B C D E F

NE (1) 0 1 0 0

B|(1) 0 1 0 0 0

ci o 1 0 1 1 O

bjl 1 0 1 O 1 O

1if (v, w) is in E =0 0 1 1 00

MV W) =9 0 otherwise F\0 O O O O O
Space = |V|?
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Adjacency Matrix for a

Digraph
A B C D E
NE (1) 0 1 0
Bl 0O 0 1 0 O
Cf 0O 0 O 1 1
bl 0 0 O O 1
1if (v, W) is in E £/ 0 0 0 0 0
MV W) =9 g otherwise F\L0 O O O O
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Adjacency List

For eachvinV, L(v) = list of w such that (v, w)isin E

a b

.’_A_\f A \
[ Em
Bl - A| —McC
c| - B —+D JE
D| A| —ic| —HE
E| —™c| D
FLo

Space=a |V|+2Db|E]
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Adjacency List for a Digraph

For each vinV, L(v) = list of w such that (v, w)isin E
a b

_+BA;4D/
e 7
el
el

m m O O W >
|
'S
O

Space=a|V|+ b |E]|
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Bipartite

* A simple graph is bipartite If:
> Its vertex set V can be partitioned into two

disjoint non-empty sets such that

e every edge in the graph connects a vertex in
one set to a vertex in the other set

* which also means that no edge connects a
vertex in one set to another vertex in the same

set
> no triangular or other odd length cycles
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Bipartite examples




Bipartite example - not

a says that b and f should be in S,
but b says a and f should be in S;.
TILT!
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Bipartite Graph Application

Classroom scheduling
> Nodes are Classrooms and Classes

> Edge between a classroom and class if the class
will fit in the classroom and has the right

technology.

classes classrooms
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Matching Problem

e FIind an assignment of classes to classrooms
so that every class fits and has the right
technology.

classes % classrooms
®

oy
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Steps in Solving the Problem

* Abstract the problem as a graph
problem.

* Find an algorithm for solving the graph
problem.

e Design data structures and algorithms
to iImplement the graph solution.

e \Write code
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Alternating Path

 Let G =(U,V,E) be a bipartite graph where
(uv) iInEonlyifuinUandvinV.

e A partial matching M is subset of E such that
If (u,v) and (u’,v’) in M then either (u = u’ and
v=v)or(u=uorv=v)

* An alternating path Is X;,X5,...,X,, such that

> (X,X,,) in E—Mifiis odd
> (X, Xi,1) INn M ifIis even
> X, and X,,, are not matched in the partial matching
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Partial Matching
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P M
E-M ——
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Alternating Path
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X, @ .
X5 X6
o
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Matching Algorithm

11/25/02

set M to be the empty set initially
repeat
find an alternating path x;,X,,...,X,,
Il (X,Xi,,) INn E—=Mifiis odd and (x;,x;,,) iIn Mifiis even
neither x, nor Xx,, matched //
delete (x;,x,,) from M if i is even
add (x;,x,,) to M if i is odd
until no alternating path can be found

If M has every vertex of U then M is a matching
If M does not have some vertex then there is complete
matching, but M is a maximum size matching

Graph Introduction - Lecture 18
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One step In the Algorithm
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Maximum Matching

* Prove that M is maximum size If and
only if there is no alternating path.

 Design data structures algorithms to
find alternating paths or determine they

don’t exist.
> Goal: fast data structures and algorithms
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