Memory Performance of
Algorithms

CSE 373
Data Structures
Lecture 16

Algorithm Performance
Factors

Algorithm choices (asymptotic running time)
> O(n?) or O(nlogn) ...
« Data structure choices
» Binary heap or linked list priority queue
» Language and Compiler
» C, C++, Java, Fortran

* Memory performance
> How near is the data to the processor

11/20/02 Memory Performance of
Algorithms - Lecture 16

Moore’s Law

transistors

Pentium 4 Processer | 100,000,000

Pentium® ll Processor

MOORE'S LAW

Pentium® il Processor -1 10,000,000

Pentium® Processor

8008
4004 i
-

1985 1990 1995 2000

1970 1975 1980

11/20/02 Memory Performance of
Algorithms - Lecture 16

Processor-Memory
Performance Gap

« x86 CPU speed (100x over 10 years)

1000 Pentium IV

Pentium III/ A

Pentium Pro
: / “Memory wall”
Pentium T
100
3860/ “Memory gap’i

X

10 X

1

89 91 93 95 97 99 01

11/20/02 Memory Performance of
Algorithms - Lecture 16

Levels in the Memory

Hierarchy

64-128 ALU registers

SRAM: a few ns N7 On-chip cache: split I-cache; D-
cache 8-128KB
SRAM/DRAM; Off-chip cache: 128KB - 4MB
~ 10-20 ns
DRAM: 40-100 ns Main memory; up to 1GB
a few Secondary memory; many GB
milliseconds

_» Archival storage

11/20/02 Memory Performance of 5
Algorithms - Lecture 16

The Cache

memory

direct mapped cache

e e
g

Cache hit : data accessed
IS in the cache.

Cache miss : data accessed %%%%%%%%

Is not in the cache

11/20/02 Memory Performance of
Algorithms - Lecture 16

Memory Blocks

Addressable unit, usually
a byte

Memory block — unit of memory
transferred as a whole from
memory to cache. Sometimes
called “cache line”. Usually, 32
64 bytes (but growing in size).

11/20/02 Memory Performance of 7
Algorithms - Lecture 16

Why Memory Blocks

* Time to transfer x bytes is given by
T(x) =a + bx. (ais latency, b ~ 1/bandwidth)
 Because a is large relative to b, it pays
to transfer more than one byte at a time.

» The hope is that bytes near the accessed
byte will be accessed soon — good spatial
locality.

11/20/02 Memory Performance of
Algorithms - Lecture 16

Locality

» Spatial locality : addresses near a
recently accessed byte are accessed
also.

* Temporal locality : the same address
that was accessed recently is accessed
again.

11/20/02 Memory Performance of
Algorithms - Lecture 16

Examples of Locality

» (Good spatial locality
» Quicksort — the array is scanned

> |] <

* Poor spatial locality
» Binary search — jump around the array

i

11/20/02 Memory Performance of
Algorithms - Lecture 16

10

Examples of locality

« Good temporal locality
» Forloop index 1in a tight loop.
fori=1tondo{...}
* Poor temporal locality

> Repeated long scans that exceeds the cache size,
like in iterative merge sort.

cache size

11/20/02 Memory Performance of 11
Algorithms - Lecture 16

Classifying Cache Misses

* Compulsory misses — first time a block is
accessed

» Can never be avoided

« Capacity misses — data structure does not fit
In cache
» Can be avoided by algorithmic design.

» Conflict misses — several accessed blocks
map to the same location in cache

» Conflict misses are not much of a problem
because modern caches are set associative.

11/20/02 Memory Performance of
Algorithms - Lecture 16

12

Set Associative Cache

memory

Two-way set associative cache

2N
N\
N\

* Two blocks of the cache can hold
blocks from the same parts of memory

* Replacement policy needed.

 Reduces conflict misses

11/20/02 Memory Performance of 13
Algorithms - Lecture 16

Cache Misses for Scans

In cache TN Not in cache |HEEN

B RN ENNENNENERSEREEER
SEERREREERER-EEEEenne et
SEERRERERRRE-ETEEEEREe e
SEERRERERRER-EEEEEER e

1/B misses per access where B is number of access per line

11/20/02 Memory Performance of 14
Algorithms - Lecture 16

Repeated Long Scans

1 Cache size

|i||

11/20/02

Memory Performance of
Algorithms - Lecture 16

} 1st scan

2" scan
beginning

15

Repeated Long Scans

* Have good spatial locality
* Poor temporal locality

* If there are B accesses per memory
block then 1/B of the accesses are

cache misses.

11/20/02 Memory Performance of
Algorithms - Lecture 16

16

— (Cache miss

Iterative Mergesort
YRV ERYRYERYRYRAYAY

kkkkkk

copy

Recursive Mergesort

11/20/02

8121914 /5|3|11|6
<«

82 9 4 531 6

o O
8 9 4 5 3 1 6
F 4 e ™
8 2 9 4 5 3 1 6
W \/2 W W4
2 8 4 9 413 5 1 6[°
2 4 8 9 1 35 616

11

2 345 6 89

Memory Performance of
Algorithms - Lecture 16

18

Recursive Mergesort

Algorithms - Lecture 16

> —

> - -

g —>|
L1 >
> -
B > S -
> > 5
>
Cache size — Cache miss
—— Cache hit
11/20/02 Memory Performance of 19

Multi-Mergesort

sort in-place (if needed)

\ Y

\ Y

\ Y

\ Y

N

N

. e

/

1/2 cache size

merge

merge sort in-place

merge

NV

N N

———

11/20/02

Memory Performance of
Algorithms - Lecture 16

merge

merge

merge

merge

20

Multi-Mergesort Cache Behavior

R T e e e T B B B B e e e s e e
sort in-place (if needed)
> > > > > > > P
NS NS N \/kmerge
\ / \ / merge sort in-place
B
N, . merge
B

/

1/2 cache size

\ Y

N

11/20/02

Memory Performance of
Algorithms - Lecture 16

merge

merge

merge

merge

21

Cache size

Quicksort

—» (Cache miss
Cache hit

11/20/02

Memory Performance of
Algorithms - Lecture 16

22

Radix sort

Souce
>

Destination
> 2 2 > > 2 2 2

T Count array
I Address array

Large memory foot print = poor memory performance
Long scans

11/20/02 Memory Performance of 23
Algorithms - Lecture 16

Sorting Study from 1996

« Compared sorting algorithms
» Cache misses
» Instruction count
» Execution time

* The study is still valid today, because
the gap between processor speed and
memory speed is even larger.

11/20/02 Memory Performance of 24
Algorithms - Lecture 16

Algorithms

* lterative mergesort
* Multi-mergesort

* Quicksort

* Heapsort

« Radix sort

» Parameters chosen for large data set.

» 4 passes for 64 bit integers.

11/20/02 Memory Performance of
Algorithms - Lecture 16

25

Cache Misses

Cache Misses

12

10 —— Quicksort

—=— lterative Merge
—— Multi-merge

8 —— Heapsort

—— Radix Sort

lterative merge

Heapsort

Cache Misses per Key
[o)]

Radix sort

2 / Quicksort
// t . + | Multi-merge

O T T T T T T T T
1000 2000 4000 8000 16000 32000 64000 128000 256000 512000 1024000 2048000 4096000

»*m

Number of Keys

11/20/02 Memory Performance of 26
Algorithms - Lecture 16

Instructions

Instructions
500
—— Quicksort
—=— |terative Merge
400 —— Multi-merge
—<— Heapsort
> —— Radix Sort
()
X
i 300
a
(72
c
S 200
S
'l‘;; /
£
100 l/.——_./ \‘M
O T T T T T T T
1000 2000 4000 8000 16000 32000 64000 128000 256000 512000 1024000 2048000 4096000
Number of Keys
11/20/02 Memory Performance of

Algorithms - Lecture 16

Heapsort

Multi-merge
Quicksort

lterative merge

Radix sort

27

Execution Time

Execution Time

2000

1800

—e— Quicksort

-
D
o
o

—=— lterative Merge

1400

—— Multi-merge
—<— Heapsort

1200

\ —— Radix Sort

1000

800

600

Execution Time per Key in Cycles

400 X///)/

1000

11/20/02

2000

4000

8000 16000 32000 64000 128000 256000 512000 1024000 2048000 4096000

Number of Keys

Memory Performance of
Algorithms - Lecture 16

Heapsort

lterative merge

Radix sort
Quicksort
Multi-merge

28

Notes on Memory
Performance

 Memory performance may matter.
* Tips
» Sacrifice instructions to get better cache
performance.
Smaller memory footprint is good.
Divide and conquer is good.
Processing data into cache sized pieces is good.

Fully utilize memory blocks if possible
« Short scans are good.
« Multiway trees are good.

)
)
)
)

11/20/02 Memory Performance of 29
Algorithms - Lecture 16

