Memory Performance of Algorithms

CSE 373

Data Structures

Lecture 16

Algorithm Performance Factors

- Algorithm choices (asymptotic running time)
 - \rightarrow O(n²) or O(n log n) ...
- Data structure choices
 - > Binary heap or linked list priority queue
- Language and Compiler
 - > C, C++, Java, Fortran
- Memory performance
 - > How near is the data to the processor

Moore's Law

Processor-Memory Performance Gap

x86 CPU speed (100x over 10 years)

4

Levels in the Memory Hierarchy

The Cache

direct mapped cache

Cache hit : data accessed

is in the cache.

Cache miss: data accessed

Is not in the cache

Memory Blocks

Memory block – unit of memory transferred as a whole from memory to cache. Sometimes called "cache line". Usually, 32 64 bytes (but growing in size).

Why Memory Blocks

- Time to transfer x bytes is given by
 T(x) = a + bx. (a is latency, b ~ 1/bandwidth)
- Because a is large relative to b, it pays to transfer more than one byte at a time.
 - > The hope is that bytes near the accessed byte will be accessed soon – good spatial locality.

Locality

- Spatial locality: addresses near a recently accessed byte are accessed also.
- Temporal locality: the same address that was accessed recently is accessed again.

Examples of Locality

- Good spatial locality
 - > Quicksort the array is scanned

- Poor spatial locality
 - > Binary search jump around the array

Examples of locality

- Good temporal locality
 - > For loop index i in a tight loop.
 for i = 1 to n do { ...}
- Poor temporal locality
 - Repeated long scans that exceeds the cache size, like in iterative merge sort.

Classifying Cache Misses

- Compulsory misses first time a block is accessed
 - Can never be avoided
- Capacity misses data structure does not fit in cache
 - Can be avoided by algorithmic design.
- Conflict misses several accessed blocks map to the same location in cache
 - Conflict misses are not much of a problem because modern caches are set associative.

Set Associative Cache

memory

Two-way set associative cache

- Two blocks of the cache can hold blocks from the same parts of memory
- Replacement policy needed.
- Reduces conflict misses

Cache Misses for Scans

1/B misses per access where B is number of access per line

Repeated Long Scans

Repeated Long Scans

- Have good spatial locality
- Poor temporal locality
- If there are B accesses per memory block then 1/B of the accesses are cache misses.

Cache miss

Cache size

Iterative Mergesort

Recursive Mergesort

Recursive Mergesort

Multi-Mergesort

Multi-Mergesort Cache Behavior

Quicksort

Radix sort

Large memory foot print = poor memory performance Long scans

Sorting Study from 1996

- Compared sorting algorithms
 - Cache misses
 - > Instruction count
 - > Execution time
- The study is still valid today, because the gap between processor speed and memory speed is even larger.

Algorithms

- Iterative mergesort
- Multi-mergesort
- Quicksort
- Heapsort
- Radix sort
 - > Parameters chosen for large data set.
 - > 4 passes for 64 bit integers.

Cache Misses

Cache Misses

Instructions

Instructions

Execution Time

Execution Time

Notes on Memory Performance

- Memory performance may matter.
- Tips
 - Sacrifice instructions to get better cache performance.
 - > Smaller memory footprint is good.
 - > Divide and conquer is good.
 - > Processing data into cache sized pieces is good.
 - > Fully utilize memory blocks if possible
 - Short scans are good.
 - Multiway trees are good.