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Algorithm Performance
Factors

Algorithm choices (asymptotic running time)
> O(n?) or O(nlogn) ...
« Data structure choices
» Binary heap or linked list priority queue
» Language and Compiler
» C, C++, Java, Fortran

* Memory performance
> How near is the data to the processor
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Processor-Memory
Performance Gap
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Levels in the Memory

Hierarchy

64-128 ALU registers

SRAM: a few ns N7 On-chip cache: split I-cache; D-
cache 8-128KB
SRAM/DRAM; Off-chip cache: 128KB - 4MB
~ 10-20 ns
DRAM: 40-100 ns Main memory; up to 1GB
a few Secondary memory; many GB
milliseconds

_» Archival storage
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The Cache

memory

direct mapped cache

e e
g

Cache hit : data accessed
IS in the cache.

Cache miss : data accessed %%%%%%%%

Is not in the cache
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Memory Blocks

Addressable unit, usually
a byte

Memory block — unit of memory
transferred as a whole from
memory to cache. Sometimes
called “cache line”. Usually, 32
64 bytes (but growing in size).

11/20/02 Memory Performance of 7
Algorithms - Lecture 16



Why Memory Blocks

* Time to transfer x bytes is given by
T(x) =a + bx. (ais latency, b ~ 1/bandwidth)
 Because a is large relative to b, it pays
to transfer more than one byte at a time.

» The hope is that bytes near the accessed
byte will be accessed soon — good spatial
locality.
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Locality

» Spatial locality : addresses near a
recently accessed byte are accessed
also.

* Temporal locality : the same address
that was accessed recently is accessed
again.
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Examples of Locality

» (Good spatial locality
» Quicksort — the array is scanned

> | ] <

* Poor spatial locality
» Binary search — jump around the array

i
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Examples of locality

« Good temporal locality
» Forloop index 1in a tight loop.
fori=1tondo{...}
* Poor temporal locality

> Repeated long scans that exceeds the cache size,
like in iterative merge sort.

cache size
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Classifying Cache Misses

* Compulsory misses — first time a block is
accessed

» Can never be avoided

« Capacity misses — data structure does not fit
In cache
» Can be avoided by algorithmic design.

» Conflict misses — several accessed blocks
map to the same location in cache

» Conflict misses are not much of a problem
because modern caches are set associative.
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Set Associative Cache

memory

Two-way set associative cache

2N
N\
N\

* Two blocks of the cache can hold
blocks from the same parts of memory

* Replacement policy needed.

 Reduces conflict misses
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Cache Misses for Scans
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1/B misses per access where B is number of access per line
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Repeated Long Scans

1 Cache size

|i||
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Repeated Long Scans

* Have good spatial locality
* Poor temporal locality

* If there are B accesses per memory
block then 1/B of the accesses are

cache misses.
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Recursive Mergesort
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Recursive Mergesort
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Multi-Mergesort

sort in-place (if needed)
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Multi-Mergesort Cache Behavior
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Cache size

Quicksort

—» (Cache miss
Cache hit
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Radix sort

Souce
>

Destination
> 2 2 > > 2 2 2

T Count array
I Address array

Large memory foot print = poor memory performance
Long scans
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Sorting Study from 1996

« Compared sorting algorithms
» Cache misses
» Instruction count
» Execution time

* The study is still valid today, because
the gap between processor speed and
memory speed is even larger.
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Algorithms

* lterative mergesort
* Multi-mergesort

* Quicksort

* Heapsort

« Radix sort

» Parameters chosen for large data set.

» 4 passes for 64 bit integers.
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Cache Misses

Cache Misses
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Instructions
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Execution Time

Execution Time
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Notes on Memory
Performance

 Memory performance may matter.
* Tips
» Sacrifice instructions to get better cache
performance.
Smaller memory footprint is good.
Divide and conquer is good.
Processing data into cache sized pieces is good.

Fully utilize memory blocks if possible
« Short scans are good.
« Multiway trees are good.

)
)
)
)
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