Sorting Introduction

CSE 373
Data Structures
Lecture 13

Reading

* Reading

> Sections 7.1-7.5,

11/13/02 Sort Intro - Lecture 13

Sorting

* Input
> an array A of data records
> akey value in each data record

» a comparison function which imposes a
consistent ordering on the keys

* Output
» reorganize the elements of A such that
* Foranyiandj, ifi<jthen A[i] <A[j]

11/13/02 Sort Intro - Lecture 13 3

Consistent Ordering

* The comparison function must provided a
consistent ordering on the set of possible keys
> You can compare any two keys and get back an
indication of a<b,a>b,ora=b
> The comparison functions must be consistent
* If compare (a,b) says a<b, then compare (b,a) must say b>a
* If compare (a,b) says a=b, then compare (b,a) must say b=a

* If compare (a,b) says a=b, then equals(a,b) and equals(b,a)
must say a=b

11/13/02 Sort Intro - Lecture 13

Why Sort?

+ Allows binary search of an N-element
array in O(log N) time

+ Allows O(1) time access to kth largest
element in the array for any k

+ Allows easy detection of any duplicates

+ Sorting algorithms are among the most
frequently used algorithms in computer
science

11/13/02 Sort Intro - Lecture 13 5

Space

* How much space does the sorting
algorithm require in order to sort the
collection of items?

» |s copying needed
» In-place sorting — no copying — O(1)
additional space.

» External memory sorting — data so large
that does not fit in memory

11/13/02 Sort Intro - Lecture 13

Time

* How fast is the algorithm?
> The definition of a sorted array A says that for any
i<, All] < A[]
> This means that you need to at least check on
each element at the very minimum
+ which is O(N)
> And you could end up checking each element
against every other element
+ which is O(N2)
> The big question is: How close to O(N) can you
get?

11/13/02 Sort Intro - Lecture 13 7

n2 ol

a0 7]
nlog,n /
800 /x' 4
P
700 2 1
“n
- A]
50 r 3 q
e
»
® y i
y
am v]
Y
m P i
/ — Ofieg, i}
/ 7
/
wlf = &e,m
A log,n o

Stability

« Stability: Does it rearrange the order of input
data records which have the same key value
(duplicates)?

> E.g. Phone book sorted by name. Now sort by
county —is the list still sorted by name within each
county?

> Extremely important property for databases

» A stable sorting algorithm is one which does not
rearrange the order of duplicate keys

11/13/02 Sort Intro - Lecture 13 9

Example

Sb‘4‘3b‘2

l

5

8

30504 13.]2[3] [5]8]3 3,

a

4]s,

[, sl

3

30

4

58

s8] [2

30

3

38

Stable Sort Unstable Sort

11/13/02 Sort Intro - Lecture 13 10

Bubble Sort

* “Bubble” elements to to their proper place in
the array by comparing elements i and i+1,
and swapping if A[i] > A[i+1]

> Bubble every element towards its correct position

« last position has the largest element

« then bubble every element except the last one towards
its correct position

« then repeat until done or until the end of the quarter
* whichever comes first ...

11/13/02 Sort Intro - Lecture 13 1"

Bubblesort

bubble (A[l..n]: integer array, n : integer): {
i, j : integer;
for i =1 to n-1 do
for j = 2 to n-i+l do
if A[3j-1] > A[j] then SWAP(A[j-1],A[]]);
}

SWAP(a,b) : {

t :integer;

t:=a; a:=b; b:=t;
}

11/13/02 Sort Intro - Lecture 13 12

Put the largest element in its
place

larger value? —» 2 3 8 8
[1T2T3]8 79 J10]12]23]18][15]16]17]14]

Shap

1Tz lsT7]

8 | 9 [10[12]23]18]15] 1617] 14|
10 12 25 23

9
[1T2T3]7 89 [10]12]23]18[15]16]17]14]
S

.}

[ilz[5]

[8 [9o[10[12]18[23[1516 17]14]
Sway

[1T2T3[7 89 J10]12]18]15][23]16]17]14]
Sway

[1T2T3]7 89 [10]12]18]15][16]23]17]14]
Sway

[1T2T3[7 89 [10]12]18]15][16]17]23]14]
Sway

[1T2T3[7 89 J10]12]18]15][16]17]14] 23]
11/13/02 Sort Intro - Lecture 13 13

Put 2"d largest element in its
place

largervalue? —> 2 3 7 8 9 10 12 18 I8
[1T2T3[7 89 [10]12[18]15][16]17]14] 23]
Sway

[1T2T3[7 &8[9 [1o]12]15]18[16]17]14] 23]
Sway

[1T2T3]7 89 [10]12]15]16]18]17]14] 23]
Sway

[1T2T3]7 89 [10]12]15]16]17]18]14] 23]
Sway

[1T2T3]7 89 10]12]15]16]17]14]18] 33|

Two elements done, only n-2 more to go ...

11/13/02 Sort Intro - Lecture 13 14

Bubble Sort: Just Say No

* “Bubble” elements to to their proper place
in the array by comparing elements i and
i+1, and swapping if A[i] > Afi+1]

* We bubblize for i=1 to n (i.e, n times)

« Each bubblization is a loop that makes n-i
comparisons

* This is O(n?)
11/13/02 Sort Intro - Lecture 13 15

Insertion Sort

» What if first k elements of array are
already sorted?
»4,7,12,5,19, 16

* We can shift the tail of the sorted elements
list down and then insert next element into
proper position and we get k+1 sorted
elements

»4,5,7,12,19, 16

11/13/02 Sort Intro - Lecture 13 16

Insertion Sort

InsertionSort(A[l..N]: integer array, N: integer) {
j, P, temp: integer ;
for P =2 to N {
temp := A[P];
j = P-1;
while j > 1 and A[j-1] > temp do
A[j] := A[j-1]; J := 3-1;
A[j] = temp;
}
}
* Is Insertion sort in place? Stable? Running time = ?

» Do you recognize this sort?
> Similar to percolate up.

11/13/02 Sort Intro - Lecture 13 17

Example

4
[7213 @0 9 [10]12]23]18[15]16]17] 14|

r 4
[T 2T3[7 89 [10]12]23 @8N 15]16]17]14]

K
9 [10]12 18] 23 [la80 16 | 17 | 14 |

[1T2TsT7Te

=
9 [10]12[18[15231617] 14]

[1T2TsT7Te

=
[T 23789 [10]12]15]18]23 @6y 17] 14|

L
9 [10[12[15[18 162317] 14]

N
w

.}
©

K4
9 [10[121516 18] 23 [aa] 14

N
w

.}
©

11/13/02 Sort Intro - Lecture 13 18

Insertion Sort Characteristics

* In place and Stable
* Running time
> Worst case is O(N2)

« reverse order input
* must copy every element every time

» Good sorting algorithm for almost sorted
data

» Each item is close to where it belongs in
sorted order.

11/13/02 Sort Intro - Lecture 13 20

K4
[T 723789 [10]12]15]16]18]17[23]14]
4
[T 723789 [10]12]15]16]17] 1823 [
X
[1T2]3[7 89 [10]12]15]16]17]18[14] 23]
4
[T 723789 [10]12]15]16]17]14]18] 23]
4
[T 723789 [10]12]15]16]14]17]18] 23]
[T T2T[3[7[8[9to]12]15]1416]17]18]23]
[T 723789 J10]12]14]15][16]17]18] 23]
11/13/02 Sort Intro - Lecture 13 19

* Aninversion is a pair of elements in wrong
order
» i <j but A[i] > A[j]

+ By definition, a sorted array has no
inversions

+ So you can think of sorting as the process
of removing inversions in the order of the
elements

11/13/02 Sort Intro - Lecture 13 21

Inversions

* A single value out of place can cause
several inversions

value

Ja .\
1/2]3]8]7]9]10[12]23]14]15]16[17]18]
index 9 1 2 3 4 5 6 7 8 9 10 11 12 13

11/13/02 Sort Intro - Lecture 13 22

Reverse order

+ All values out of place (reverse order)
causes numerous inversions

value

N\ N
1/2]3]8]7]9]10[12]23]18]17]16]15]14]
A \;1//!

idex 0 1 2 3 4 5 6 7 8 9 10 11 12 13

11/13/02 Sort Intro - Lecture 13 23

Inversions

+ Our simple sorting algorithms so far swap
adjacent elements (explicitly or implicitly)
and remove just 1 inversion at a time

» Their running time is proportional to number
of inversions in array

+ Given N distinct keys, the maximum
possible number of inversions is

n-1
. (n-1)n
(-1)+(n-2)+.+1=3i= 01N
= 2
11/13/02 Sort Intro - Lecture 13 24

Inversions and Adjacent Swap
Sorts

» "Average" list will contain half the max
number of inversions = 0-h
» So the average running time of Insertion

sort is ®(N2)

» Any sorting algorithm that only swaps
adjacent elements requires Q(N2) time
because each swap removes only one
inversion

11/13/02 Sort Intro - Lecture 13 25

Heap Sort

* We use a Max-Heap
* Root node = A[1]
+ Children of A[i] = A[2i], A[2i+1]
» Keep track of current size N (number of
nodes)
— @
|

1] 8 ®
5678

value

index 1 2 3
N=5

11/13/02 Sort Intro - Lecture 13 26

Using Binary Heaps for
Sorting

Build a max-heap Build @

» Do N DeleteMax operations Max-heap (5) (©
and store each Max @ @
|

element as it comes out of
the heap

» Data comes out in largest
to smallest order

* Where can we put the ® @
elements as they are @ @
removed from the heap?

11/13/02 Sort Intro - Lecture 13 27

DeleteMax ()

1 Removal = 1 Addition

» Every time we do a DeleteMax, the heap
gets smaller by one node, and we have one
more node to store

> Store the data at the end of the heap array
> Not "in the heap" but it is in the heap array

value

slsfel2fa] | [| @® @
index
i 2 3 4 5 6 17 8 9 @

N=4

11/13/02 Sort Intro - Lecture 13 28

Repeated DeleteMax

O]
slefalefz] | [| @ @
1 2 3 4 5 6 71 8 ® @

N=3
alefslefa] | [] @ @
1 2 3 4 5 6 71 8 ® @

N=2

11/13/02 Sort Intro - Lecture 13 29

Heap Sort is In-place

« After all the DeleteMaxs, the heap is gone
but the array is full and is in sorted order

value

@
2lafsfela] | [] @ ®
@

imlCX1234ssvs@
N=0

11/13/02 Sort Intro - Lecture 13 30

Heapsort: Analysis

* Running time

> time to build max-heap is O(N)

» time for N DeleteMax operations is N O(log N)

» total time is O(N log N)
» Can also show that running time is Q(N log N)

for some inputs,

> so worst case is @(N log N)

» Average case running time is also O(N log N)
* Heapsort is in-place but not stable

11/13/02 Sort Intro - Lecture 13 31

