Hashing

CSE 373
Data Structures
Lecture 10

Readings and References

 Reading

> Chapter 5

10/21/02 Hashing - Lecture 10

The Need for Speed

e Data structures we have looked at so far
> Use comparison operations to find items
> Need O(log N) time for Find and Insert

* |n real world applications, N is typically
between 100 and 100,000 (or more)

> log N Is between 6.6 and 16.6

e Hash tables are an abstract data type
designed for O(1) Find and Inserts

10/21/02 Hashing - Lecture 10

Fewer Functions Faster

e compare lists and stacks

> by reducing the flexibility of what we are allowed to do,
we can increase the performance of the remaining
operations

> Insert(L,X) into a list versus push(S,X) onto a stack

e compare trees and hash tables
> trees provide for known ordering of all elements
> hash tables just let you (quickly) find an element

10/21/02 Hashing - Lecture 10 4

Limited Set of Hash
Operations

 For many applications, a limited set of
operations is all that is needed

> Insert, Find, and Delete
> Note that no ordering of elements is implied
 For example, a compiler needs to maintain
Information about the symbols in a program
> user defined
> language keywords

10/21/02 Hashing - Lecture 10

Direct Address Tables

« Direct addressing using an array Is very fast

e Assume
> keys are integers in the set U={0,1,...m-1}
> mis small
> no two elements have the same key

 Then just store each element at the array
location array[key]
> search, insert, and delete are trivial

10/21/02 Hashing - Lecture 10

Direct Access Table

tabl e
key data

S S

U

(universe of keys)
Oe

9.

(Actual keys)

[Cormen, et a]
10/21/02 Hashing - Lecture 10

Direct Address
Implementation

Del ete(Table t, El enent Type x)
T[key[x]] = NULL

| nsert(Table t, El enmentType Xx)
T[key[x]] = x

Find(Table t, Key k)
return T[K]

10/21/02 Hashing - Lecture 10

An Issue

e The largest possible key in U may be much
larger than the number of elements actually
stored (JU| much greater than |K]|)

> the table is very sparse and wastes space
> In worst case, table too large to have in memory

 |f most keys in U are used
> direct addressing can work very well

e |f most keys in U are not used
> need to map U to a smaller set closer in size to K

10/21/02 Hashing - Lecture 10

Mapping the Keys

Key Universe

432¢ t abl e

key data
928104 ® . 0 Y\

103673 ® — A 1f’ 24
o7

——— ’ \ “ S 3456
Hash Function é’ 4

" \5\’54724
2 ‘ 6

10 3

7

Table o7 ge- > 8 4 g
iIndices 9

10/21/02 Hashing - Lecture 10 10

Hashing Schemes

 \We want to store N items In a table of

size M, at a location computed from the
key K

e Hash function

> Method for computing table index from key
e Collision resolution strategy

> How to handle two keys that hash to the
same index

10/21/02 Hashing - Lecture 10 11

Looking for an Element

e Data records can be stored In arrays.

> A
> A
> A

0] = {“CHEM 110", Size 89}
3] = {“CSE 142", Size 251}

17] = {*CSE 373", Size 85}

e Class size for CSE 3737

> Linear search the array — O(N) worst case
time
> Binary search - O(log N) worst case

10/21/02

Hashing - Lecture 10 12

Go Directly to the Element

 What If we could directly index into the
array using the key?
> A[“CSE 373"] = {Size 85}

 Main idea behind hash tables

> Use a key based on some aspect of the
data element to index directly into an array

> O(1) time to access records

10/21/02 Hashing - Lecture 10 13

Indexing Iinto Hash Table

 Need a fast hash function to convert the element
key (string or number) to an integer (the hash
value) (ie, map from U to index)

> Then use this value to index into an array
> Hash(“CSE 373") = 157, Hash(“CSE 143") = 101

e Output of the hash function
> must always be less than size of array
> should be as evenly distributed as possible

10/21/02 Hashing - Lecture 10 14

Choosing the Hash Function

e \WWhat properties do we want from a
hash function?

> Want universe of hash values to be
distributed randomly to minimize collisions

> Don’t want systematic nonrandom pattern
In selection of keys to lead to systematic
collisions

> Want hash value to depend on all values In
entire key and their positions

10/21/02 Hashing - Lecture 10 15

The Key Values are Important

 Notice that one issue with all the hash
functions Is that the actual content of

the key set matters

 The elements in K (the keys that are

used) are quite possibly a restricted
subset of U, not just a random collection

> variable names, words in the English
language, reserved keywords, telephone
numbers, etc, etc

10/21/02 Hashing - Lecture 10 16

Simple Hashes

 |t's possible to have very simple hash
functions If you are certain of your keys

 For example,

> suppose we know that the keys s will be real
numbers uniformly distributed over0 <s<1

> Then a very fast, very good hash function is
* hash(s) = floor(s-m)
« where m is the size of the table

10/21/02 Hashing - Lecture 10

17

Very Simple Mapping

e hash(s) = floor(s:-m) maps from0<s<1to

0..m-1
>m =10

S 0.0/0.1/{0.2]0.3|/0.4({0.5/0.6|0.7/0.8]0.9
floor(s*m 0 1 2 3

Note the even distribution. There are collisions, but we will deal with them later.

10/21/02

Hashing - Lecture 10

18

Perfect Hashing

e |n some cases it's possible to map a known set
of keys uniquely to a set of index values

e You must know every single key beforehand
and be able to derive a function that works

one-to-one (not necessarily onto)

hash(s) 0 1 2 3 4 5 6 7 8 9

10/21/02 Hashing - Lecture 10 19

Mod Hash Function

* One solution for a less constrained key set

> modular arithmetic
e a nod size

> remainder when "a" is divided by "size"
> In C or Java this is writtenasr = a % si ze;
> If TableSize = 251

e 408 mod 251 = 157
e 352 mod 251 =101

10/21/02 Hashing - Lecture 10

20

Modulo Mapping

 a mod m maps from integers to 0..m-1
> one to one? no

> onto? yes
X 4 3 2 1 0 1 2 3 4 5 6
X mod 4 0 1 2 3 0 1 2 3 0 1 2

10/21/02 Hashing - Lecture 10

Hashing Integers

 |f keys are integers, we can use the hash
function:
> Hash(key) = key mod TableSize

 Problem 1: What if TableSize is 11 and all
keys are 2 repeated digits? (eq, 22, 33, ...)
> all keys map to the same index

> Need to pick TableSize carefully: often, a prime
number

10/21/02 Hashing - Lecture 10 22

Nonnumerical Keys

 Many hash functions assume that the universe of
keys Is the natural numbers N={0,1,...}

 Need to find a function to convert the actual key
to a natural number quickly and effectively before
or during the hash calculation

e Generally work with the ASCII character codes
when converting strings to numbers

10/21/02 Hashing - Lecture 10 23

Characters to Integers

 |f keys are strings can get an integer by adding up
ASCII values of characters in key

« We are converting a very large string c,c,C, ... C, tO
a relatively small number cy,+c;+c,+...+c, mod size.

character —»| C S E 3 7 3 <0>
ASCI| value —»{ 67 83 69 32 51 55 51 0

10/21/02 Hashing - Lecture 10 24

Hash Must be Onto Table

 Problem 2: What if TableSize is 10,000
and all keys are 8 or less characters
long?
> chars have values between 0 and 127
> Keys will hash only to positions O through

8*127 = 1016

* Need to distribute keys over the entire

table or the extra space Is wasted

10/21/02 Hashing - Lecture 10 25

Problems with Adding

Characters

* Problems with adding up character values
for string keys

> |f string keys are short, will not hash
evenly to all of the hash table

> Different character combinations hash to
same value

o “abc’”, “bca”, and “cab” all add up to the same
value

10/21/02 Hashing - Lecture 10 26

Characters as Integers

* An character string can be thought of
as a base 256 number. The string

c,C,...C, can be thought of as the
number

c, + 256¢, , + 256%c,, + ... + 256" c,

e Use Horner’'s Rule to Hash!

r=0;
for i =1 to n do
r := (c[i] + 256*r) nod Tabl eSi ze

10/21/02 Hashing - Lecture 10 27

Collisions

e A collision occurs when two different
keys hash to the same value

> E.g. For TableSize = 17, the keys 18 and
35 hash to the same value

> 18 mod1l7=1and35mod 17 =1

e Cannot store both data records in the
same slot in array!

10/21/02 Hashing - Lecture 10 28

Collision Resolution

e Separate Chaining

> Use data structure (such as a linked list) to
store multiple items that hash to the same
slot

 Open addressing (or probing)

> search for empty slots using a second
function and store item In first empty slot
that Is found

10/21/02 Hashing - Lecture 10 29

Resolution by Chaining

« Each hash table cell holds
pointer to linked list of records
with same hash value

o Collision: Insert item into linked
list

 To Find an item: compute hash
value, then do Find on linked
list

« Note that there are potentially
as many as TableSize lists

10/21/02 Hashing - Lecture 10

bug

Zur g

N O g~ WINIF|O

hoppi

30

Why Lists?

e Can use List ADT for Find/Insert/Delete In
linked list

> O(N) runtime where N is the number of elements
In the particular chain

« Can also use Binary Search Trees
> O(log N) time instead of O(N)

> But the number of elements to search through
should be small

> generally not worth the overhead of BSTs

10/21/02 Hashing - Lecture 10 31

Load Factor of a Hash Table

e Let N = number of items to be stored

 Load factor A = N/TableSize
> TableSize = 101 and N =505, then L =5
> TableSize = 101 and N =10, then A =0.1

* Average length of chained list = A and so
average time for accessing an item = O(1) +

O(2)
> Want A to be close to 1 (i.e. TableSize = N)
> But chaining continues to work for A > 1

10/21/02 Hashing - Lecture 10

32

Resolution by Open Addressing

* No links, all keys are In the table
> reduced overhead saves space

* \When searching for X, check locations
h,(X), h(X), hy(X), ..untileither

> XIs found; or
> we find an empty location (X not present)

 Various flavors of open addressing
differ in which probe sequence they use

10/21/02 Hashing - Lecture 10 33

Cell Full? Keep Looking.

o h.(X)=(Hash(X)+F(i)) nod Tabl eSi ze
> Define F(0) =0

* F Is the collision resolution function.
Some possibilities:
> Linear: F(1) =1
> Quadratic: F(i) = i?
> Double Hashing: F(i) = i1-Hash,(X)

10/21/02 Hashing - Lecture 10 34

Linear Probing

When searching for K, check locations h(K),
h(K) +1, h(K)+2, ... mod TableSize until
either

> Kis found; or

> we find an empty location (K not present)

If table Is very sparse, almost like separate
chaining.

When table starts filling, we get clustering but
still constant average search time.

Full table = Infinite loop.

10/21/02 Hashing - Lecture 10 35

Primary Clustering Problem

 Once a block of a few contiguous occupied
positions emerges In table, it becomes a
“target” for subsequent collisions

« As clusters grow, they also merge to form
larger clusters.

* Primary clustering: elements that hash to
different cells probe same alternative cells

10/21/02 Hashing - Lecture 10

36

Linear Probing — Clustering

collision in small cluster

- L_;EJEJ'LJLJ .. .
ummummmmmﬁu collision in large cluster
o llei® eyt
L mummmgmmmmmmmu

PRI

e e
[R. Sedgewick]

10/21/02 Hashing - Lecture 10 37

Quadratic Probing

* \When searching for X, check locations
h,(X), h(X) + i2, hy(X)+i3, ..nod
Tabl eSi ze until either
> XIs found; or

> we find an empty location (X not present)

 No primary clustering but secondary
clustering possible

10/21/02 Hashing - Lecture 10 38

Double Hashing

 When searching for X, check locations h,(X),
h(X)+ hy(X), hy(X)+2*h,(X), ...nod Tabl esi ze
until either
> Xs found; or
> we find an empty location (X not present)

* Must be careful about h,(X)
> Not O and not a divisor of M

> eg, h,(k) = k nod m, h,(k)=1+(k nod m,)
> where m, is slightly less than m

10/21/02 Hashing - Lecture 10 39

Double Hashing

no CO||ISIOHm uggmmmuuuu

LJLJLHLJMUL!JIEJEJLJEJEJLJL!"

- 'L!!'.._EEJLJ‘ '|__1I EJBJLJL!'.L'_':LJM

P
LJ.L_LL_IIL_'IL_'I'LJ.'L_J"L_J.LJ..LJLJlL_lllL_'IL_'Il

L_'.L_'.L_'IL_E'LJ'L_JLJLJ -
LJLJL_'IL_'IL_ILJL_lLl'._J

10/21/02 Hashing - Lecture 10

collision, try again
at hy(x)+h,(x)

collision, try again
at hy(2)+hy(2),

at hy(2)+2h,(2),
at hy(2)+3ny(2), ...

40

Rules of Thumb

Separate chaining is simple but wastes space...

Linear probing uses space better, Is fast when
tables are sparse, interacts well with paging and
caching

Double hashing is space efficient, fast (get initial
hash and increment at the same time), needs
careful implementation

For average cost about t + O(1)

> Max load for Linear Probing is 1-1/+t

> Max load for Double Hashing is 1-1/t

10/21/02 Hashing - Lecture 10 41

Rehashing — Rebuild the Table

 Need to use lazy deletion if we use probing
(Why?)
> Need to mark array slots as deleted after Delete
> consequently, deleting doesn’t make the table any
less full than it was before the delete

 |f table gets too full (A = 1) or Iif many
deletions have occurred, running time gets
too long and Inserts may fall

10/21/02 Hashing - Lecture 10 42

Rehashing

« Build a bigger hash table of approximately twice the size
when A exceeds a particular value

> Go through old hash table, ignoring items marked
deleted

> Recompute hash value for each non-deleted key and
put the item Iin new position in new table

> Cannot just copy data from old table because the
bigger table has a new hash function

 Running time is O(N) but happens very infrequently
> Not good for real-time safety critical applications

10/21/02 Hashing - Lecture 10 43

Rehashing Example

* Open hashing — h;(x) = x mod 5 rehashes to
h,(X) = x mod 11.

r=1 IIIII

37 83
52 98

0 1 2 45 6 7 8 9
v=511 DR EEEEEEEEE

3 10
25 37 83 52 o8

10/21/02 Hashing - Lecture 10

Rehashing Picture

« Starting with table of size 2, double when
load factor > 1.

1 hashes
Bl rehashes

1 23 45 6 7 89 1011121314 15 161718 1920 212324 25

10/21/02 Hashing - Lecture 10 45

Amortized Analysis of

Rehashing

e Cost of inserting n keys is < 3n
e 2+ 1<n< 2k
> Hashes =n
> Rehashes =2 + 22 + .., + 2k=2k*1 _2
> Total =n + 2k*1 — 2 < 3n
 Example
> Nn=33, Total =33 + 64 -2 =95 <99

10/21/02 Hashing - Lecture 10

46

Caveats

e Hash functions are very often the cause
of performance bugs.

e Hash functions often make the code not
portable.

e Sometime a poor HF distribution-wise Is
faster overall.

* Always check where the time goes

10/21/02 Hashing - Lecture 10 47

