
1

AVL Trees

CSE 373
Data Structures

Lecture 8

10/16/02 AVL Trees - Lecture 8 2

Readings and References

• Reading
› Section 4.4,

10/16/02 AVL Trees - Lecture 8 3

Binary Search Tree - Best
Time

• All BST operations are O(d), where d is
tree depth

• minimum d is for a binary tree
with N nodes
› What is the best case tree?
› What is the worst case tree?

• So, best case running time of BST
operations is O(log N)

� �Nlogd 2�

10/16/02 AVL Trees - Lecture 8 4

Binary Search Tree - Worst
Time

• Worst case running time is O(N)
› What happens when you Insert elements in

ascending order?
• Insert: 2, 4, 6, 8, 10, 12 into an empty BST

› Problem: Lack of “balance”:
• compare depths of left and right subtree

› Unbalanced degenerate tree

10/16/02 AVL Trees - Lecture 8 5

Balanced and unbalanced BST

4

2 5

1 3

1

5

2

4

3

7

6

4

2 6

5 71 3

10/16/02 AVL Trees - Lecture 8 6

Approaches to balancing trees

• Don't balance
› May end up with some nodes very deep

• Strict balance
› The tree must always be balanced perfectly

• Pretty good balance
› Only allow a little out of balance

• Adjust on access
› Self-adjusting

2

10/16/02 AVL Trees - Lecture 8 7

Balancing Trees

• Many algorithms exist for keeping trees
balanced
› Adelson-Velskii and Landis (AVL) trees
› Splay trees and other self-adjusting trees
› B-trees and other multiway search trees

10/16/02 AVL Trees - Lecture 8 8

Perfect Balance
• Want a complete tree after every operation

› tree is full except possibly in the lower right

• This is expensive
› For example, insert 2 in the tree on the left and

then rebuild as a complete tree

Insert 2 &
complete tree

6

4 9

81 5

5

2 8

6 91 4

10/16/02 AVL Trees - Lecture 8 9

AVL - Pretty Good Balance

• AVL trees are height-balanced binary
search trees

• Balance factor of a node
› height(left subtree) - height(right subtree)

• An AVL tree has balance factor
calculated at every node
› For every node, heights of left and right

subtree can differ by no more than 1
› Store current heights in each node

10/16/02 AVL Trees - Lecture 8 10

Height of an AVL Tree

• N(h) = minimum number of nodes in an
AVL tree of height h.

• Basis
› N(0) = 1, N(1) = 2

• Induction
› N(h) = N(h-1) + N(h-2) + 1

• Solution
› N(h) > �h (� � 1.62) h-1

h-2

h

10/16/02 AVL Trees - Lecture 8 11

Height of an AVL Tree

• N(h) > �h (� � 1.62)
• Suppose we have n nodes in an AVL

tree of height h.
› n > N(h)

› n > �h

› log� n > h (relatively well balanced tree!!)

10/16/02 AVL Trees - Lecture 8 12

Node Heights

1

00

2

0

6

4 9

81 5

1

height of node = h
balance factor = hleft-hright
empty height = -1

0

0

2

0

6

4 9

1 5

1

3

10/16/02 AVL Trees - Lecture 8 13

Node Heights after Insert 7

2

10

3

0

6

4 9

81 5

1

height of node = h
balance factor = hleft-hright
empty height = -1

1

0

2

0

6

4 9

1 5

1

0

7

0

7

balance factor
1-(-1) = 2

-1

10/16/02 AVL Trees - Lecture 8 14

Insert and Rotation in AVL
Trees

• Insert operation may cause balance factor
to become 2 or –2 for some node
› only nodes on the path from insertion point to

root node have possibly changed in height
› So after the Insert, go back up to the root

node by node, updating heights
› If a new balance factor (the difference hleft-

hright) is 2 or –2, adjust tree by rotation around
the node

10/16/02 AVL Trees - Lecture 8 15

Single Rotation in an AVL
Tree

2

10

2

0

6

4 9

81 5

1

0

7

0

1

0

2

0

6

4

9

8

1 5

1

0

7

10/16/02 AVL Trees - Lecture 8 16

Let the node that needs rebalancing be �.

There are 4 cases:
Outside Cases (require single rotation) :

1. Insertion into left subtree of left child of �.
2. Insertion into right subtree of right child of �.

Inside Cases (require double rotation) :
3. Insertion into right subtree of left child of �.
4. Insertion into left subtree of right child of �.

The rebalancing is performed through four
separate rotation algorithms.

Insertions in AVL Trees

10/16/02 AVL Trees - Lecture 8 17

j

k

X Y

Z

Consider a valid
AVL subtree

AVL Insertion: Outside Case

h

h
h

10/16/02 AVL Trees - Lecture 8 18

j

k

X
Y

Z

Inserting into X
destroys the AVL
property at node j

AVL Insertion: Outside Case

h

h+1 h

4

10/16/02 AVL Trees - Lecture 8 19

j

k

X
Y

Z

Do a “right rotation”

AVL Insertion: Outside Case

h

h+1 h

10/16/02 AVL Trees - Lecture 8 20

j

k

X
Y

Z

Do a “right rotation”

Single right rotation

h

h+1 h

10/16/02 AVL Trees - Lecture 8 21

j

k

X Y Z

“Right rotation” done!
(“Left rotation” is mirror

symmetric)

Outside Case Completed

AVL property has been restored!

h

h+1

h

10/16/02 AVL Trees - Lecture 8 22

j

k

X Y

Z

AVL Insertion: Inside Case

Consider a valid
AVL subtree

h

hh

10/16/02 AVL Trees - Lecture 8 23

Inserting into Y
destroys the
AVL property
at node j

j

k

X
Y

Z

AVL Insertion: Inside Case

Does “right rotation”
restore balance?

h

h+1h

10/16/02 AVL Trees - Lecture 8 24

j
k

X

Y
Z

“Right rotation”
does not restore
balance… now k is
out of balance

AVL Insertion: Inside Case

h
h+1

h

5

10/16/02 AVL Trees - Lecture 8 25

Consider the structure
of subtree Y… j

k

X
Y

Z

AVL Insertion: Inside Case

h

h+1h

10/16/02 AVL Trees - Lecture 8 26

j

k

X
V

Z

W

i

Y = node i and
subtrees V and W

AVL Insertion: Inside Case

h

h+1h

h or h-1

10/16/02 AVL Trees - Lecture 8 27

j

k

X
V

Z

W

i

AVL Insertion: Inside Case

We will do a left-right
“double rotation” . . .

10/16/02 AVL Trees - Lecture 8 28

j

k

X V

Z
W

i

Double rotation : first rotation

left rotation complete

10/16/02 AVL Trees - Lecture 8 29

j

k

X V

Z
W

i

Double rotation : second
rotation

Now do a right rotation

10/16/02 AVL Trees - Lecture 8 30

jk

X V ZW

i

Double rotation : second
rotation

right rotation complete

Balance has been
restored to the universe

hh h or h-1

6

10/16/02 AVL Trees - Lecture 8 31

Implementation

balance (1,0,-1)

key

rightleft

10/16/02 AVL Trees - Lecture 8 32

Single Rotation

RotateFromRight(n : reference node pointer) {
p : node pointer;
p := n.right;
n.right := p.left;
p.left := n;
n := p
}

X

Y Z

n

10/16/02 AVL Trees - Lecture 8 33

Double Rotation

• Class participation
• Implement Double Rotation in two lines.
DoubleRotateFromRight(n : reference node pointer) {
????
}

X

n

V W

Z

10/16/02 AVL Trees - Lecture 8 34

AVL Tree Deletion

• Similar to insertion
› Rotations and double rotations needed to

rebalance
› Imbalance may propagate upward so that

many rotations may be needed.

10/16/02 AVL Trees - Lecture 8 35

Arguments for AVL trees:

1. Search is O(log N) since AVL trees are always balanced.
2. The height balancing adds no more than a constant factor to the

speed of insertion.

Arguments against using AVL trees:
1. Difficult to program & debug; more space for height info.
2. Asymptotically faster but rebalancing costs time.
3. Most large searches are done in database systems on disk and use

other structures (e.g. B-trees).
4. May be OK to have O(N) for a single operation if total run time for

many consecutive operations is fast (e.g. Splay trees).

Pros and Cons of AVL Trees

10/16/02 AVL Trees - Lecture 8 36

Double Rotation Solution

DoubleRotateFromRight(n : reference node pointer) {
RotateFromLeft(n.right);
RotateFromRight(n);
}

X

n

V W

Z

