
1

AVL Trees

CSE 373
Data Structures

Lecture 8
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Readings and References

• Reading 
› Section 4.4, 
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Binary Search Tree - Best 
Time

• All BST operations are O(d), where d is 
tree depth

• minimum d is                   for a binary tree 
with N nodes
› What is the best case tree? 
› What is the worst case tree?

• So, best case running time of BST 
operations is O(log N)

� �Nlogd 2�
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Binary Search Tree - Worst 
Time

• Worst case running time is O(N) 
› What happens when you Insert elements in 

ascending order?
• Insert: 2, 4, 6, 8, 10, 12 into an empty BST

› Problem: Lack of “balance”: 
• compare depths of left and right subtree

› Unbalanced degenerate tree
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Balanced and unbalanced BST
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Approaches to balancing trees

• Don't balance
› May end up with some nodes very deep

• Strict balance
› The tree must always be balanced perfectly

• Pretty good balance
› Only allow a little out of balance

• Adjust on access
› Self-adjusting
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Balancing Trees

• Many algorithms exist for keeping trees 
balanced
› Adelson-Velskii and Landis (AVL) trees 
› Splay trees and other self-adjusting trees
› B-trees and other multiway search trees
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Perfect Balance
• Want a complete tree after every operation

› tree is full except possibly in the lower right

• This is expensive
› For example, insert 2 in the tree on the left and 

then rebuild as a complete tree

Insert 2 &
complete tree
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AVL - Pretty Good Balance

• AVL trees are height-balanced binary 
search trees

• Balance factor of a node
› height(left subtree) - height(right subtree)

• An AVL tree has balance factor 
calculated at every node
› For every node, heights of left and right 

subtree can differ by no more than 1
› Store current heights in each node
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Height of an AVL Tree

• N(h) = minimum number of nodes in an 
AVL tree of height h.

• Basis
› N(0) = 1, N(1) = 2

• Induction
› N(h) = N(h-1) + N(h-2) + 1

• Solution
› N(h) > �h (� � 1.62) h-1

h-2

h
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Height of an AVL Tree

• N(h) > �h (� � 1.62)
• Suppose we have n nodes in an AVL 

tree of height h.
› n > N(h) 

› n > �h

› log� n > h  (relatively well balanced tree!!)
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Node Heights
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Node Heights after Insert 7
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Insert and Rotation in AVL 
Trees

• Insert operation may cause balance factor 
to become 2 or –2 for some node 
› only nodes on the path from insertion point to 

root node have possibly changed in height
› So after the Insert, go back up to the root 

node by node, updating heights
› If a new balance factor (the difference hleft-

hright) is 2 or –2, adjust tree by rotation around 
the node
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Single Rotation in an AVL 
Tree
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Let the node that needs rebalancing be �.

There are 4 cases:
Outside Cases (require single rotation) :

1. Insertion into left subtree of left child of �.
2. Insertion into right subtree of right child of �.

Inside Cases (require double rotation) :
3. Insertion into right subtree of left child of �.
4. Insertion into left subtree of right child of �.

The rebalancing is performed through four 
separate rotation algorithms.

Insertions in AVL Trees
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Inserting into X
destroys the AVL 
property at node j

AVL Insertion: Outside Case 
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Do a “right rotation”

AVL Insertion: Outside Case 

h

h+1 h

10/16/02 AVL Trees - Lecture 8 20

j

k

X
Y

Z

Do a “right rotation”

Single right rotation
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j
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X Y Z

“Right rotation” done!
(“Left rotation” is mirror

symmetric)

Outside Case Completed

AVL property has been restored!
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AVL Insertion: Inside Case 

Consider a valid
AVL subtree
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Inserting into Y 
destroys the
AVL property
at node j 
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AVL Insertion: Inside Case

Does “right rotation”
restore balance?

h

h+1h

10/16/02 AVL Trees - Lecture 8 24

j
k

X

Y
Z

“Right rotation”
does not restore
balance… now k is
out of balance

AVL Insertion: Inside Case
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Consider the structure
of subtree Y… j
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AVL Insertion: Inside Case
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Y = node i and
subtrees V and W

AVL Insertion: Inside Case
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AVL Insertion: Inside Case

We will do a left-right 
“double rotation” . . .
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Double rotation : first rotation

left rotation complete
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Double rotation : second 
rotation

Now do a right rotation
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Double rotation : second 
rotation

right rotation complete

Balance has been 
restored to the universe

hh h or h-1
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Implementation

balance (1,0,-1)

key

rightleft

10/16/02 AVL Trees - Lecture 8 32

Single Rotation

RotateFromRight(n : reference node pointer) {
p : node pointer;
p := n.right;
n.right := p.left;
p.left := n;
n := p
}
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Double Rotation

• Class participation
• Implement Double Rotation in two lines.
DoubleRotateFromRight(n : reference node pointer) {
????
}
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AVL Tree Deletion

• Similar to insertion
› Rotations and double rotations needed to 

rebalance
› Imbalance may propagate upward so that 

many rotations may be needed.
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Arguments for AVL trees:

1. Search is O(log N) since AVL trees are always balanced.
2. The height balancing adds no more than a constant factor to the 

speed of insertion.

Arguments against using AVL trees:
1. Difficult to program & debug; more space for height info.
2. Asymptotically faster but rebalancing costs time.
3. Most large searches are done in database systems on disk and use

other structures (e.g. B-trees).
4. May be OK to have O(N) for a single operation if total run time for 

many consecutive operations is fast (e.g. Splay trees).

Pros and Cons of AVL Trees
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Double Rotation Solution

DoubleRotateFromRight(n : reference node pointer) {
RotateFromLeft(n.right);
RotateFromRight(n);
}
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