Basics on Pointers

CSE 373
Data Structures
Lecture 2

Basic Types and Arrays

 Basic Types

> integer, real (floating point), boolean (0,1),
character

* Arrays
> A[0..99] : integer array

012 3 456 7

99
ATy -

AL 5]

10/2/02 Basics on Pointers - Lecture 2

Records and Pointers

» Record (also called a struct)
> Group data together that are related

X : conpl ex pointer
real _part : real

i mginary_part : real

> To access the fields we use “dot” notation.

X.real _part
X. i magi nary_part

10/2/02 Basics on Pointers - Lecture 2

Record Definition

» Record definition creates a new type
Definition
record conplex : (
real _part : real,
i magi nary_part : real
)
Use in a declaration
X : conpl ex

1072/02 Basics on Pointers - Lecture 2 4

Pointer

* A pointer is areference to a variable or
record (or object in Java world).

X : blob pointer

*X bl ob

* In C, if X is of type pointer to Y then *X is of
10/2/'0:¥pe Y Basics on Pointers - Lecture 2

Creating a Record

» We use the “new” operator to create a
record.

P : pointer to blob;
p[] (nllpointer)

P := new blob;

L

10/2/02 Basics on Pointers - Lecture 2 6

Simple Linked List

Sparse Polynomials

e Alinked list
> Group data together in a flexible, dynamic way.
> We'll describe several list ADTs later.

L : node pointer

(4] {9l 3

record node : (

data : integer
next : node pointer
)
10/2/02 Basics on Pointers - Lecture 2

e 10+ 4 x2+ 20 x*0 + 8 x86

Exponents in
Increasing order

record poly : (

" exp
exp : iInteger,
P 9 coef

coef : integer,

next
next : poly pointer
)

10/2/02 Basics on Pointers - Lecture 2 8

Identically Zero Polynomial

Addition of Polynomials

P[] null pointer

10/2/02 Basics on Pointers - Lecture 2

10 + 4 x2 + 20 x40 + 8 x86

Recursive Addition

Add(P, Q: poly pointer): poly pointer{
R : poly pointer

case {
P=null : R:=Q;
Q=null : R:= H
P.exp < Qexp: R:=P;
R next := Add(P.next,Q;
P.exp > Qexp: R:=Q;
R next := Add(P, Q next);
P.exp = Qexp: R:=P;
R coef := P.coef + Q coef ;
R next := Add(P.next, Q next);
return R
}

10/2/02 Basics on Pointers - Lecture 2

11

PL—fo] [2] lad (g
10| [4] |20 [
Lo L0 L .
7 x+10x2 -8 x86
QLE—1] [2] g
7] 10 -8
10/2/02 Basics on Pointers - Lecture 2 10
Example
Add

10/2/02 Basics on Pointers - Lecture 2 12

Example

Add
PLI—o] [2] o [eg
10 [4] |20 8]
RUJ [1]
Q1] [2] [
7] 0 |
[]

10/2/02 Basics on Pointers - Lecture 2

13

The Recursive Call

Add

1072/02 Basics on Pointers - Lecture 2 14

After the Recursive Call

Add

Add |

10/2/02 Basics on Pointers - Lecture 2

15

Example

Add

10/2/02 Basics on Pointers - Lecture 2 16

Example

unneeded

garbage

10/2/02 Basics on Pointers - Lecture 2

17

Notes on Addition

 Addition is destructive, that is, the
original polynomial are gone after the
operation.

* We don't salvage “garbage” nodes.
We'll talk about this later.

* We don’t consider consider the case
when the coefficients cancel. We’'ll talk
about that later.

10/2/02 Basics on Pointers - Lecture 2 18

Unneeded to Garbage

* Class participation

» How would you force the unneeded
node to be garbage in the code on slide
117

10/2/02 Basics on Pointers - Lecture 2 19

Memory Management —
Private Store

« Private store — get blocks from a private
store when possible and return them
when done.

+ Efficiently uses blocks of a specific size

- The list of unused blocks can build up
eventually using too much memory.

10/2/02 Basics on Pointers - Lecture 2 20

Private Store

unneeded

garbage

10/2/02 Basics on Pointers - Lecture 2 21

Private Store

R[]

FreelLi st

10/2/02 Basics on Pointers - Lecture 2 22

Memory Management —
Global Allocator

* Global Allocator’s store — always get
and return blocks to global allocator
+ Necessary for dynamic memory.

+ Blocks of various sizes can be merged if
they reside in contiguous memory.

- Allocator may not handle blocks of different
sizes well.

- Allocator may be slower than a private
store.

10/2/02 Basics on Pointers - Lecture 2 23

Memory Management —
Garbage Collection

» Garbage collection — run time system
recovers inaccessible blocks from time-
to-time. Used in Lisp, Smalltalk, Java.
+ No need to return blocks to an allocator or

keep them in a private store.

- Care must be taken to make unneeded
blocks inaccessible.

- When garbage collection kicks in there
may be undesirable response time.

1072/02 Basics on Pointers - Lecture 2 24

Solution to Class Work

P.exp = Qexp: R:=P;
R coef := P.coef + Q coef ;
if Rcoef =0 then
R := Add(P. next, Q next);
el se

R next := Add(P.next, Q next);

10/2/02 Basics on Pointers - Lecture 2

25

Use of Private Store or
Global Allocator

P.exp = Qexp: R:=P;
R coef := P.coef + Q coef ;
if Rcoef =0 then
R := Add(P. next, Q next);
Free(P); Free(Q;

el se
R next := Add(P.next, Q next);
Free(Q;
}
10/2/02 Basics on Pointers - Lecture 2 26

