CSE 373 Spring 2001: Sample Final Exam Solutions

1. Big Oh and Theta (a and b:5 and 5 points)
a. Which of the following statements is/are true:
i. $\mathrm{N}^{2}+\mathrm{N} \log \mathrm{N}$ is $\Theta\left(\mathrm{N}^{2}\right)$
ii. $\mathrm{N}^{2}-17$ is $\Omega\left(\mathrm{N}^{2}\right)$
iii. $15 \mathrm{~N}+\log \mathrm{N}$ is $\mathrm{O}(\log \mathrm{N})$
iv. 2^{N} is $\mathrm{o}\left(\mathrm{N}^{100}\right)$

Answer: i and ii
b. What is the running time $T(N)$ of the following code fragment in Θ notation as a function of N? Explain your answer.

```
int result = 0;
int i = N;
while (i >= 1)
{
    result++;
    i = i / 2;
}
```

Answer: $\mathrm{T}(\mathrm{N})=\Theta(\log \mathrm{N})$. Here, $\mathrm{i}=\mathrm{N} / 2^{\mathrm{j}}$. Loop is executed k times, until: $\mathrm{N} / 2^{\mathrm{k}}<1$ which implies $k=(\log \mathrm{N})+1$, which implies $T(N)=\Theta(\log \mathrm{N})$.
2. Recurrence Relations and Run Time Analysis (a and b: 4 and 6 points)

Consider the following recursive function:

```
int Lessby3(int N){
    if (N < 3) return 3;
    else return Lessby3(N-3) *Lessby3 (N-3);
}
```

a. Suppose $T(N)$ is the running time of the above function for input N. Write down the recurrence relation for $\mathrm{T}(\mathrm{N})$.

Answer: $\mathrm{T}(\mathrm{N})=2 \mathrm{~T}(\mathrm{~N}-3)+\mathrm{c}$ (for $\mathrm{N}>=3$ and $\mathrm{c}=$ constant) $\mathrm{T}(\mathrm{N})=\mathrm{c}_{0}$ for $\mathrm{N}<3$ (c_{0} is another constant).
b. Solve your recurrence relation in (a) to get an expression for $T(N)$. What is the running time $\mathrm{T}(\mathrm{N})$ in Θ notation?

Answer: $\mathrm{T}(\mathrm{N})=2 \mathrm{~T}(\mathrm{~N}-3)+\mathrm{c}=2(2 \mathrm{~T}(\mathrm{~N}-6)+\mathrm{c})+\mathrm{c}=2(2(2 \mathrm{~T}(\mathrm{~N}-9)+\mathrm{c})+\mathrm{c})+\mathrm{c}=\ldots$ $=2^{\mathrm{i}} \mathrm{T}(\mathrm{N}-3 \mathrm{i})+2^{\mathrm{i}-1} \mathrm{c}+2^{\mathrm{i}-2} \mathrm{c}+\ldots+\mathrm{c}=2^{\mathrm{N} / 3} \mathrm{~T}(0)+\left(2^{\mathrm{N} / 3}-1\right) \mathrm{c}=\underline{\Theta\left(2^{\mathrm{N} / 3}\right)}$
3. AVL and Splay Trees (a and b: 5 and 5 points)

The following two questions are based on the following tree:

a. Suppose the above tree is an AVL tree. Draw the AVL tree that results from inserting 7 followed by 11 into the above AVL tree.

Answer:

b. Suppose the above tree is a splay tree. Draw the tree that results from inserting 7 followed by 11 into the above splay tree.

Answer:

4. Priority Queues (a, b, and $\mathrm{c}: 3,2$, and 5 points)
a. Draw the binary heap (a min-heap) that results from inserting the sequence of integers $10,12,1,14,6,5$ into an initially empty binary heap.

Answer:

b. Recall that the binomial tree of height k is formed by combining two binomial trees of height k-1, with height zero represented by a one-node tree. A binomial queue contains some combination of binomial trees. How many binomial trees can there be in a binomial queue with N nodes?

Answer: $\mathrm{O}(\log \mathrm{N})$
c. Let Q1 be the binomial queue that results from inserting the integers 12, 21, 24, $65,14,26,16,18,23,51,24,65,13$ (in that order) into an empty binomial queue. Let Q2 be the binomial queue that results from inserting the integers 2, 11, 29, $55,15,18,4$ (in that order) into an empty binomial queue. Draw the result of merging queues Q1 and Q2.

5. Hashing (a, b, and $\mathrm{c}: 4,4,2$ points)

Consider the hash function $\operatorname{Hash}(X)=X \bmod 9$ and the ordered input sequence of keys $51,23,73,99,44,79,89,38$. Draw the result of inserting these keys in that order into a hash table of size 9 (cells indexed by $0,1, \ldots, 8$) for the following two collision resolution strategies:
a. open addressing with linear probing, where $\mathrm{F}(\mathrm{i})=\mathrm{i}$

0	99
1	73
2	89
3	38
4	
5	23
6	51
7	79
8	44

b. open addressing with double hashing, where hash $_{2}(X)=7-(X \bmod 7)$ and $F(i)=$ i.hash ${ }_{2}(\mathrm{X})$

0	99
1	73
2	38
3	89
4	
5	23
6	51
7	79
8	44

c. What is the load factor of the hash tables in (a) and (b)?

Answer: $8 / 9=0.89$ for both (a) and (b)
6. Simple Sorts and Heapsort (a, b, and c: 4, 2, and 4 points)
a. Sort the array $34,8,64,51,32,21$ using Insertion Sort. Write your answer in the form of a table showing the array after each pass.

Answer: (Same as Figure 7.1 in textbook)

Original	$\mathbf{3 4}$	$\mathbf{8}$	$\mathbf{6 4}$	$\mathbf{5 1}$	$\mathbf{3 2}$	$\mathbf{2 1}$
After $\mathrm{p}=1$	8	34	64	51	32	21
After $\mathrm{p}=2$	8	34	64	51	32	21
After $\mathrm{p}=3$	8	34	51	64	32	21
After $\mathrm{p}=4$	8	32	34	51	64	21
After $\mathrm{p}=5$	8	21	32	34	51	64

b. What is the running time of insertion sort for input size N if
i. the input is already sorted?
ii. the input is in reverse order?

Choose the best upper bound from: $\mathrm{O}(\log \mathrm{N}), \mathrm{O}(\mathrm{N}), \mathrm{O}(\mathrm{N} \log \mathrm{N})$, and $\mathrm{O}\left(\mathrm{N}^{2}\right)$
Answer: i. $\mathrm{O}(\mathrm{N})$ ii. $\mathrm{O}\left(\mathrm{N}^{2}\right)$
c. Sort the sequence 7, 3, 1, 5, 4 using Heapsort. First show the result of BuildHeap and then the result after each DeleteMax. Draw both the tree-structured heap and the input array.

Answer: See the solution for Question 6c in Homework \#4.
7. Mergesort and Quicksort (a and $\mathrm{b}: 6$ and 4 points)
a. Sort the sequence $3,1,4,1,5,9,2,6$ using Mergesort. Show the sequence of elements after each of the recursive "divide-in-half" steps as well as the result of each of the merge steps.

Answer: Same as the solution for Question 6d in Homework \#4.
b. Which of the following statements is/are true (write down all that you think are true - use the standard implementation of Mergesort and Quicksort as discussed in class and in the textbook):
i. Mergesort is an "in-place" sorting algorithm
ii. Quicksort has $\mathrm{O}\left(\mathrm{N}^{2}\right)$ worst case running time
iii. Mergesort and Quicksort both have $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ worst running time
iv. Quicksort is an "in-place" sorting algorithm
v. Quicksort is a "stable" sorting algorithm

Answer: ii and iv
8. Union-Find (a and b: 5 and 5 points)

Consider the set of initially unrelated elements $0,1,2,3,4,5,6,7,8$.
a. Recall the union-by-size operation. Draw the final forest of up-trees that results from the following sequence of operations based on union-by-size: Union $(1,2)$, Union(3,1), Union(4,7), Union(5,6), Union(4,5), Union(1,4)

Answer:

b. Recall what path compression does. Draw the new forest of up-trees that results from doing a Find(2) with path compression, followed by a Find(3) with path compression on your forest of up-trees from (a).

Answer:

9. Shortest Path and MST (a and b: 6 and 4 points)

You can fill in this page and submit it with your other answer sheets
a. Fill in the following tables using Dijkstra's algorithm for single-source shortest path for the given directed graph, with source $=\mathrm{C}$:

Answer:
Initial Table

Vertex v	known	Cost d_{v}	Prev p_{v}
A	No	∞	NULL
B	No	∞	NULL
C	Yes	0	NULL
D	No	∞	NULL
E	No	∞	NULL

Final Table

Vertex v	known	Cost d_{v}	Prev p_{v}
A	Yes	8	D
B	Yes	10	A
C	Yes	0	NULL
D	Yes	5	E
E	Yes	2	C

9. Shortest Path and MST (continued) (a and b: 6 and 4 points)
a. Let T be an initially empty tree that will hold the edges in a minimal spanning tree. Write down the sequence of edges (u, v) that are added to T by Kruskal's algorithm for finding the minimum spanning tree for the following weighted graph:

Answer: (A,B), (B,C), (B,E), (E,F), (A,D)
Other answers are also possible depending on which of the 1-cost edges are chosen. E.g.. (A,C), (A,B), (B,E), (E,F), (A,D), but the total cost should be the same $=11$
10. NP-completeness (a: 4 points)
a. Dr. G. Nyess has just announced an algorithm for the Hamiltonian circuit problem that runs in time $\mathrm{O}\left(\mathrm{N}^{9} \log \mathrm{~N}\right)$. Assuming Dr. Nyess' claim is true, which of the following statements is/are true (write down all that you think are true):
i. The Hamiltonian circuit problem is no longer in NP
ii. The Hamiltonian circuit problem is now in P
iii. The Hamiltonian circuit problem is no longer NP-complete
iv. $P=N P$
v. $P \neq N P$

Answer: ii and iv (If any NP-complete problem can be solved in polynomial time, all problems in NP can be solved in polynomial time (they are in P) and thus, $\mathrm{P}=\mathrm{NP}$).

