PAGE

Page 2 of 8

Name: ____________________________________

Student Number:___________________________

University of Washington

CSE 373, Data Structures and Algorithms, Autumn 2001

Instructor: Donald Chinn

December 19, 2001

FINAL EXAM

· This test is CLOSED book. However, you are allowed one sheet (8.5” x 11”, both sides) of notes to refer to during the exam. No magnifying glasses or other similar visual aids are allowed.

· The blank space left for your answers is proportional to the length of a correct answer. If you need more space for your answer, use the back of the previous page and indicate that you did so.

· The questions’ weights give you an indication of how much time you are expected to spend on each of them. There are 100 points, and the exam is 110 minutes long, so spend about 1 minute per point.

· Think carefully before writing down your answers. Use the back of the pages as scratch paper if you need it. Don’t spend too much time on any question. Some questions may be harder for you than other questions.

· This exam has 8 pages.

	1
	/20

	2
	/18

	3
	/14

	4
	/12

	5
	 /8

	6
	/14

	7
	/14

	Total
	/100

1. (20 points, 2 points each) True/False. Circle True or False below. You do not need to justify your answers.

	a.
	It is possible to compute the height of a binary tree by performing an inorder traversal on the tree.
	True False

	b.
	An adjacency matrix for a graph G=(V, E) requires O(|V|2) space.
	True False

	c.
	Prim’s algorithm for finding a minimum spanning tree will find a minimum spanning tree of a connected graph even if some or all of the edges in the graph have negative weights.

	True False

	d.
	In a binary heap, the percolateDown() operation is used when deleteMin() is performed on the heap.
	True False

	e.
	If we alter the algorithm for topological sort so that it uses a stack instead of a queue, it will still compute a topological ordering of the input graph if such an ordering exists.
	True False

	f.
	If at some point in Prim’s algorithm E’ is the set of edges it has accepted so far and V’ is the set of all the endpoints of edges in E’, then G=(V’, E’) is a connected graph. (The endpoints of an edge (u, v) are just u and v.)
	True False

	g.
	If at some point in Kruskal’s algorithm E’ is the set of edges it has accepted so far and V’ is the set of all the endpoints of edges in E’, then G=(V’, E’) is a connected graph.
	True False

	h.
	For large input sizes (but small enough to fit in main memory), quicksort with median-of-three pivot will always run faster than insertion sort (on the same input).
	True False

	i.
	For large input sizes (but small enough to fit in main memory), mergesort will always run faster than selection sort (on the same input).
	True False

	j.
	A binary heap containing n items has height no more than log2 n.
	True False

2a. (2 points) A priority queue ADT can be implemented using an AVL tree. Write the worst case running time of the insert() and deleteMin() operations in such an implementation with N items. (Use Big-Oh notation.)

insert: ________________ deleteMin: ________________

2b. (4 points) For each data structure below, write how long it would take to find the maximum element of the N elements in the data structure in the worst case. Assume that the elements are all integers. Use Big-Oh notation.

	Data structure
	Running time to find maximum element

	AVL tree
	

	Splay tree
	

	Hash table
	

	Binary heap (which supports insert() and deleteMin() in O(log N) time)
	

2c. (6 points) Write a function that sorts an array of booleans using only a constant amount of extra space. Recall that the syntax for a vector<> is essentially the same as an array, but in addition, there is a size() function that returns how large the vector is. If N is the size of the array, then your function should run in O(N) time.

// Given a vector of boolean values, sort them so that

// the array has all the false elements followed by the

// true elements.

void BoolSort (vector<bool> & A)

{

}

2d. (6 points) Suppose we had an algorithm that is able to compute the median of N integers in O(N) time. (Recall that the median of N numbers is the (N/2(th largest number.) Now suppose that in quicksort we use that algorithm to determine the pivot. What is the worst case running time of this version of quicksort? Briefly justify your answer (one or two sentences is sufficient).

3a. (4 points) Consider a hash table of size 10,000 that uses open addressing. Suppose the hash function is h(x), and there are four items A, B, C, and D such that h(A) = h(B) = h(C) = h(D). Now suppose that the table is empty, and then we perform the following operations in the given order: insert(A), insert(B), insert(C), insert(D). For each collision resolution mechanism below, write down how many probes it would take to find the elements A, B, C, and D. (For double hashing, assume for all of the four items, h(x) ≠ h2(x), and that no two of the four items collide when using h2(x).)
	
	linear probing
	quadratic probing
	double hashing

	find(A)
	1
	1
	1

	find(B)
	
	
	

	find(C)
	
	
	

	find(D)
	
	
	

3b. (4 points) Suppose we have a splay tree consisting of the integers 1 through N. Describe (or draw) what the splay tree would look like after performing the operations find(1), find(2), find(3), … , find(N), in that order.

3c. (6 points) A heuristic is a rule that results in behavior that may not be exactly predictable, but which there is reason to believe will be good in general. The move-to-front heuristic for a list ADT implementation is: After each successful search, move the item that was sought to the front of the list. For example, suppose we have a list consisting of the following integers (the first item of the list is on the left): 14 8 7 12 5. Then after find(12), the list would look like this: 12 14 8 7 5.

Give a short explanation for why the move-to-front heuristic might improve the performance of a list ADT implementation.

4. (12 points total) This problem is related to the spreadsheet that you implemented in Project #3. To refresh your memory on the terminology:

spreadsheet – a two-dimensional array of cells.

cell – a position in the spreadsheet, consisting of a formula and a value.

formula – a C++ expression involving cell references, left and right parentheses, and the binary operators +, -, *, and / . (No unary minus.)

The value of a cell is 0, if the cell is empty (no formula), or the integer that is the result of evaluating the formula (a cell reference evaluates to its value).

An expression tree is used to represent a formula, where nodes can be operators (+, -, *, /), literals, or cell references. For example, the expression tree corresponding to the formula (3 + A1) * (5 - (B2 + A2)) would look like this:

Here are the formulas for a sample 3 x 3 spreadsheet:

	
	A
	B
	C

	0
	12
	
	5

	1
	A0-4
	A1 * B0
	

	2
	B2+A1*7
	2
	A2-C0

	
	A
	B
	C

	0
	
	
	

	1
	
	
	

	2
	
	
	

a. (3 points) In the blank grid provided at the right, write down the value of each cell in the sample spreadsheet. (You might want to do part b first.)

b. (3 points) Draw the depencency graph corresponding to the above sample spreadsheet. (Label each vertex in the logical way.)

c. (3 points) What kind of tree traversal of the expression tree do you need to perform to evaluate the expression tree?

d. (3 points) For the purposes of the expression tree, a token is just a literal, a cell reference, or one of the binary operators. What is the running time for the function that recalculates the values of all the cells in an N x M spreadsheet, assuming that there are k tokens on average for each cell in the spreadsheet?

5. (8 points total) Suppose H1 and H2 are heaps. H1 has n items, and H2 has m items. Pseudocode for an algorithm to merge the two heaps into a new heap H3 consisting of the n+m items in H1 and H2 might look like this:

copy H1 to H3; // H3 now looks just like H1

for (int i = 0; i < m; i++)

{

 x = H2.deleteMin();

 H3.insert(x);

}

a. (4 points) If all the heaps are implemented as binary heaps, how long will this algorithm take? (Use Big-Oh notation.)

b. (4 points) Could there be an advantage, compared to the above pseudocode, in copying H2 into H3 and then inserting elements from H1 to H3? (As in part a, assume the heaps are binary heaps.) Why or why not?

6. (14 points total) After graduating from the University of Washington, you have landed a highly coveted software engineer position at Minisquish Corporation. Despite president and CEO Gill Bates’s objections, the employees at the company have demanded that they each get a web page.

Each web page has a fixed set of links to other pages in the company. However, at Bates’s request, no web page is allowed to have links to web pages outside the company.

a. (8 points) Suppose you are given a list of web pages and, for each web page, which web pages it has links to. Describe an efficient algorithm (one that is as fast as possible) that computes, for all web pages, the fewest number of mouse clicks that is necessary to get from that web page to Gill Bates’s web page.

b. (4 points) How long does your algorithm take in the worst case? (Be sure to clearly define any variables you use in your answer.)

c. (2 points) Describe a situation where it would be impossible to get to Gill Bates’s web page from your web page by following links (starting at your web page).

7. (14 points total) Consider the following modification to mergesort, called 4-way mergesort. Instead of dividing the input array into two subarrays, 4-way mergesort divides the array into four subarrays (as equally-sized as possible), sorts them recursively, and then calls a 4-way merge function, which combines four sorted arrays into one sorted array.

a. (2 points) What is the worst case number of comparisons 4-way merge makes if given as input four arrays, each of size M? Do not use Big-Oh notation.

b. (4 points) Write a recurrence relation T(N) that expresses the worst case number of comparisons used in 4-way mergesort given an array of N elements as input. (We can assume that T(1) = 1.) Do not use Big-Oh notation.

c. (4 points) Solve the recurrence relation. Show your work (either on this page or on the back of the previous page — if you use the previous page, indicate you did so).

d. (4 points) For large input sizes (but small enough to fit in main memory), do you think 4-way mergesort would run faster in practice than normal (2-way) mergesort? Why or why not?

3

*

A2

B2

+

5

(

+

A1

