
1

http://www.cs.washington.edu/education/courses/cse373/00sp

CSE 373: Sorting II

Pete Morcos

University of Washington

4/18/00

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

2

Analyzing Mergesort

• Recall: mergesort splits array in half and
recursively calls itself on the halves

• Work done per step is O(N) for the merge

• Each recursive call has half as much work to do

• We write a recurrence relation for the time T as a
function of N:
– T(1) = O(1)

– T(N) = 2 * T(N/2) + O(N)

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

3

Recurrences

• One way to see the value of this recurrence is to
keep expanding the terms
– T(N) = 2 * T(N/2) + N
– T(N) = 2 * [2 * T(N/4) + N/2] + N
– = 4 * T(N/4) + 2 * N
– T(N) = 4 * [2 * T(N/8) + N/4] + 2 * N
– = 8 * T(N/8) + 3 * N
– ...
– T(N) = 2log N * T(1) + (log N) * N
– = N * O(1) + N log N
– = O(N log N)

or, 22 * T(N/22) + 2 * N

or, 23 * T(N/23) + 3 * N

or, 2log N * T(N/2log N) + log N * N

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

4

Quicksort

• Mergesort operated by arbitrarily splitting the
array in half, sorting the halves, and merging
– Splitting was easy

– Merging took O(N) work

• Quicksort is slightly different
– Partition array into halves

• Elements in left half all smaller than elements in right half

– Recurse on halves

– Concatenate halves – O(1) work

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

5

Partitioning

• Choose a value p (the pivot) from the list

• Move all elements ≤ p into left half, elements ≥ p into right
half
– Note ambiguity for elements that equal p

• How long does this take?

• Can partition array in place by swapping elements in the
wrong half

17 24 24 42 87 4 42 91

244 24 42 87 42 9117

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

6

Partitioning In-place

• Important not to use an extra array
• Algorithm:

– Swap pivot with last element, leaving N-1
– Set pointers i, j at beginning, end
– Move i up array until hit an element > p
– Move j down array until hit an element < p
– Swap elements pointed at by i and j
– Repeat until i and j meet
– Swap pivot with element at meeting point

• Keys equal to p are annoying—see book

This inner loop
is very simple—
just repeated
compare and
increment. This
is why quicksort
is so fast.

2

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

7

Choosing Pivot

• Naive: pick first element
– What if it’s the smallest or largest?

– What happens if array was sorted?

• Optimal: pick the median
– How much work?

• Randomize: pick a random element
– Makes naive problem very unlikely

– Requires random number generator

• Standard trick is median-of-three...

17 24 24 42 87 4 42 91

4 24 24 42 87 17 42 91

4 17 24 24 42 42 87 91

17 24 24 42 87 4 42 91

BAD!

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

8

Median-of-three pivot selection

• Instead of finding median of whole list, find
median of first, middle, and last elements

• Constant time

• Reduces chance of poor behavior compared to just
looking at one element, and doesn’t have troubles
with sorted inputs

78 93 27 61 42 53 13 42 87

42

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

9

Quicksort example

42

13 11 65 78 93 27 61 4 53 7 42 87 24 42 91

13 11 27 4 7 4224 4265 78

42

93 53 87 9161

13 11 4 7 24

27

4242 6153 65 78 93 87 91

4 7 13 42 53 42 65 78 87 91 93

4 7 65 78 87

4 7 13

114 7 13

11

114 7 13 24 27

65 78 87 93

65 78 87 91 9342 42 53

42 42 53 61 65 78 87 91 93

114 7 13 24 27 42 42 42 53 61 65 78 87 91 93

53 42

42 53

27

13 93

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

10

Quicksort Analysis

• Best case: we choose the ideal pivot every time, and split
the list evenly
– T(0) = T(1) = O(1)

– T(N) = 2 * T(N/2) + O(N)

– same as mergesort discussion: O(N log N)

• Worse case: we choose the worst pivot, leaving one of the
halves empty
– T(0) = T(1) = O(1)

– T(N) = T(N-1) + O(N)
• T(N) = [T(N-2) + O(N-1)] + O(N)

• ...

• = O(N2)

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

11

Sorting Choices

• O(N2)
– Bubble
– Selection
– Insertion: may be easiest to remember

• O(N log N)
– Heapsort
– Mergesort: simple, easy to remember
– Quicksort: fastest in practice, danger of O(N2)

• For small N (e.g. < 20), the N log N sorts are
slower due to extra complexity
– Test N and use simpler sort if small

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

12

Quickselect

• Recall that to select the kth smallest item in a list, we
have a few choices:
– k linear scans, removing smallest each time: O(k N)

– make a heap, do k DeleteMin’s: O(N + k log N)

• For the median, k = N/2, these are O(N2), O(N log N)

• Quickselect uses a similar divide-and-conquer
strategy to quicksort, and runs in O(N) average time,
but O(N2) worst case

3

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

13

Quickselect algorithm

• If array is size 1, we’re done

• Otherwise, partition array as with quicksort
– Left half size L, right half size N – L – 1

– If k <= L, the kth smallest is in the left half

– if k = L + 1, the pivot is the kth smallest, stop!

– if k > L + 1, the kth smallest is in the right half

• Recurse on the side chosen above

• Only one recursive call, unlike quicksort

• T(N) = T(N/2) + O(N)
– = [T(N/4) + O(N/2)] + O(N)

– = [T(N/8) + O(N/4)] + O(N/2) + O(N)

– ... = O(N)
UW, Spring 2000 CSE 373: Data Structures and Algorithms

Pete Morcos
14

Sorting large structures

• Sorting involves a lot of swapping, as you’ve seen

• What if each item is a big data record, e.g. 2000
bytes of info about a student?
– Don’t want to repeatedly copy that much data

• Instead, sort pointers to each record
– Obviously, you don’t sort the pointer values

themselves—they’re just addresses

– When you want to compare two items, dereference the
pointers to get at the sort key in the record

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

15

Bucket sort

• What if set of values have a relatively small range of
values? (e.g. 1 to 10,000)

• Allocate array count[10000]
• Scan list, for an element p, increment count[p]
• When done, go through count array and output value v as

many times as count[v]
• O(N)...doesn’t this violate our lower bound proof?
• No. We are no longer limited to comparing one element to

another. When we jump directly to the right element of the
count array, we are effectively comparing against all N-1
other elements.

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

16

Stable Sorting

• A stable sort is one that does not change the order of items
with the same sort key

• Matters if there was some other ordering already present

27Ann

27Gina

32Gina

31Ann

21Bob

17Ann

32Joe

32Gina

32Joe

31Ann

27Ann

27Gina

21Bob

17Ann

32Joe

32Gina

27Gina

21Bob

31Ann

27Ann

17Ann

sort by
age

sort by
name

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

17

Radix sort

• Bucket sort + stable sorting

• Sometimes bucket sort is unusable because there
are too many buckets

• But, if you can divide sort key into “slices”, you
can bucket sort on each slice
– e.g. digits in a number, characters in a string

• Trick is to sort on least significant slice first, not
most significant

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

18

Radix sort example

422

821

907

247

366

102

427

762

208

111

348

812

208

348

907

247

427

366

422

102

762

812

821

111

366

762

348

247

427

422

821

812

111

208

907

102

907

821

812

762

427

422

366

348

247

208

111

102

sort on
ones digit

sort on
tens digit

sort on
hundreds digit

4

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

19

External Sorting

• (We won’t cover in detail, but just so you know it
exists...)

• Often in the real world, the data to be sorted is so
big it can’t fit in memory.

• So, read in a chunk at a time and sort the bits.

• Then, merge two sorted chunk together
– Once sorted, we only need first element in each to

merge

• Repeat until we only have one “chunk”

