[Exptate et e Me s e s M s Max Bax Ba e i e S ax Ba s Mas M s M Ba s Ma s M s s B e s e

CSE 373: Sorting Il

Pete Morcos
University of Washington
4/18/00

[e e e e e s e e e

Recurrences

[ax i an e s

e

fa e s e e 0a a2 n s un e a2 e s S o n £ e}

* One way to seethe value of this recurrenceisto
keep expanding the terms
—T(N)=2*T(N/2) +N
— T(N)=2*[2* T(N/4) + N/2] + N
- =4* T(N/4)+2*N
— T(N)=4*[2* T(N/8) + N/4] +2* N
- =8*T(N/8)+3*N

or, 22 T(N/22) +2* N

or, 28 T(N/2%) +3* N

— T(N) =2'99N* T(1) + (log N) * N ‘ or, 209N * T(N/209N) + log N * N

- =N*O(1) + Nlog N
- = O(N log N)

UW, Spring 2000 CSE 373: Data Structures and Algorithms 3
Pete Morcos

Partitioning

[axitan et s ax e Bea M s M larte e e e s e e e e e e e S

¢ Choose avalue p (the pivot) from thelist

* Moveall elements< pinto left half, elements> p into right
half

— Note ambiguity for elements that equal p
[24[24[e2[e7] « [e2]o1]

B

* How long does this take?
« Can partition array in place by swapping elementsin the
wrong half

UW, Spring 2000 CSE 373: Data Structures and Algorithms 5
e Morcos

Analyzing Mergesort

O e

¢ Recall: mergesort splits array in haf and
recursively callsitself on the halves

« Work done per step is O(N) for the merge

« Each recursive cal has half as much work to do

« Wewritearecurrencerelation for thetime T asa
function of N:
- T(1)=0(2)
— T(N) =2* T(N/2) + O(N)

UW, Spring 2000 CSE 373: Data Structures and Algorithms 2
Pete Morcos

Quicksort

* Mergesort operated by arbitrarily splitting the
array in haf, sorting the halves, and merging
— Splitting was easy
— Merging took O(N) work

¢ Quicksort is dightly different
— Partition array into halves

 Elementsin left half all smaller than elementsin right half

— Recurse on halves
— Concatenate halves — O(1) work

[ax i an e s

e

UW, Spring 2000 CSE 373: Data Structures and Algorithms 4
Pete Morcos

Partitioning In-place

O e

« |Important not to use an extra array
¢ Algorithm:
— Swap pivot with last element, leaving N-1
— Set pointersi, j at beginning, end
— Movei up array until hit an element > p This inner loop
— Movej down array until hit an element < p isvery simple—

— Swap elements pointed at by i and jclf,,;a,e aﬁz

P) ‘ i
— Repeat gnnl |_and j meet _ . :23’;:;;:' d@'}f{
— Swap pivot with element at meeting point is so fast.

« Keysegual to p are annoying—see book

UW, Spring 2000 CSE 373: Data Structures and Algorithms 6
Pete Morcos

Choosing Pivot

BADS Naive: pick first element
" — What if it’sthe smallest or largest?
— What happens if array was sorted?
¢ Optimal: pick the median
— How much work?
¢ Randomize: pick arandom element
— Makes naive problem very unlikely
— Requires random number generator
 Standard trick is median-of-three...

UW, Spring 2000 CSE 373: Data Structures and Algorithms 7
e Morcos

O

e

<)

Quicksort example

[ax i an e s e

e

O

eae e]

G eEE] F el

EEGE

DEEEHE

P EEEER R

UW, Spring 2000 CSE 373: Data Structures and Algorithms 9
Pete Morcos

Sorting Choices

¢ O(N?)

— Bubble

— Selection

— Insertion: may be easiest to remember
*« O(NlogN)

— Heapsort

— Mergesort: simple, easy to remember

— Quicksort: fastest in practice, danger of O(N?)
¢ For small N (eg. < 20), theN log N sorts are

slower due to extra complexity

— Test N and use simpler sort if small

UW, Spring 2000 CSE 373: Data Structures and Algorithms. 1
Pete Morcos

e

M edian-of-three pivot selection

O e

> (O (O (- [T

« Instead of finding median of wholelist, find
median of first, middle, and last elements

¢ Constant time

« Reduces chance of poor behavior compared to just
looking at one element, and doesn’t have troubles
with sorted inputs

UW, Spring 2000 CSE 373: Data Structures and Algorithms 8
Pete Morcos

Quicksort Analysis

[axitan et e Max Baa M s M

« Best case: we choose theideal pivot every time, and split
thelist evenly
- T(O=T(1)=0(1)
— T(N)=2* T(N/2) + O(N)
— same as mergesort discussion: O(N log N)
« Worse case: we choose the worst pivot, leaving one of the
halves empty
- T(0)=T(1) =0(1)
— T(N) = T(N-1) + O(N)
« T(N) = [T(N-2) + O(N-1)] + O(N)

. : O(N?)

UW, Spring 2000 CSE 373: Data Structures and Algorithms 10
Pete Morcos

Quickselect

¢ Recall that to select the kth smallest itemin alist, we
have afew choices:
— k linear scans, removing smallest each time: O(k N)
— make aheap, do k DeleteMin’s: O(N + k log N)
« For themedian, k = N/2, these are O(N2), O(N log N)
¢ Quickselect uses a similar divide-and-conquer

strategy to quicksort, and runsin O(N) average time,
but O(N2) worst case

O

e

UW, Spring 2000 CSE 373: Data Structures and Algorithms 12
Pete Morcos

O

Quickselect algorithm

s O O T O [T [T O T

If array issize 1, we're done
Otherwise, partition array as with quicksort
— Left half sizeL, right half szeN —L —1
— If k <=L, the kth smallest isin the left half
— if k =L + 1, the pivot is the kth smallest, stop!
— if k> L + 1, thekth smallest isin the right half
Recurse on the side chosen above
Only onerecursive call, unlike quicksort
T(N) = T(N/2) + O(N)
- =[T(N/4) + O(N/2)] + O(N)
- =[T(N/8) + O(N/4)] + O(N/2) + O(N)
=O(N)

UW, Spring 2000 CSE 373: Data Structures and Algorithms: 13

Bucket sort

What if set of values have arelatively small range of
values? (e.g. 1to 10,000)

Allocate array count [10000]
Scan ligt, for an element p, increment count [p]

When done, go through count array and output value v as
many times as count [v]

O(N)...doesn’t this violate our lower bound proof?

No. We are no longer limited to comparing one element to
another. When we jump directly to the right element of the
count array, we are effectively comparing against all N-1
other elements.

UW, Spring 2000 CSE 373: Data Structures and Algorithms 15
Pete Morcos
oo et e =]

Bucket sort + stable sorting

Sometimes bucket sort is unusable because there
are too many buckets

But, if you can divide sort key into “dlices’, you
can bucket sort on each slice

— e.g. digitsin anumber, charactersin a string
Trick isto sort on least significant dice first, not
most significant

UW, Spring 2000 CSE 373: Data Structures and Algorithms. 17

Pete Morcos

Sorting large structures

O e

« Sorting involves alot of swapping, as you' ve seen
« What if eachitemisabig datarecord, e.g. 2000
bytes of info about a student?
— Don't want to repeatedly copy that much data
« Instead, sort pointers to each record
— Obviously, you don’t sort the pointer values
themselves—they’re just addresses
— When you want to compare two items, dereference the
pointersto get at the sort key in the record

O O T O [T [T O T

UW, Spring 2000 CSE 373: Data Structures and Algorithms 1
Pete Morcos
et e et e e e]

« A stable sort is one that does not change the order of items
with the same sort key

« Mattersif there was some other ordering already present

Joe 32 Anén |17 Ann |17
Anmn |17 Bob |21 Ann |27
Bob |21 Gina |27 Ann |31
Ann |31 Ann |27 Bob |21
Gina |32 Ann |31 Gina |27
Gina |27 Joe 32 Gina |32
Anmn |27 Gina |32 Joe 32

UW, Spring 2000 CSE 373: Data Structures and Algorithms 16

Pete Morcos

Radix sort example

[axitan et s ax e Bea M s M

O O T O [T [T O T

812 111 102 102
348 821 907 111
111 812 208 208
208 762 111 247
762 102 812 348
427 422 821 366
102 366 422 422
366 427 427 427
247 247 247 762
907 907 348 812
821 348 762 821
422 208 366 907

UW, Spring 2000 CSE 373: Data Structures and Algorithms 18
Pete Morcos

External Sorting

« (Wewon't cover in detail, but just so you know it
exists...)
« Often in thereal world, the datato be sorted is so
bigit can’t fit in memory.
* So, read in achunk at atime and sort the hits.
¢ Then, merge two sorted chunk together
— Once sorted, we only need first element in each to
merge
* Repeat until we only have one “chunk”

O O T O [T [T O T

UW, Spring 2000 CSE 373: Data Structures and Algorithms. 19
Pete Morcos

