CSE 373 Final Review List
OPEN BOOK, OPEN NOTES

1. Complexity
¢ Be able to analyze and compare the time complexities of various algorithms using Big-O
notation.
e Be able to answer questions on the class of polynomial-time algorithms, the class of
NP-complete problems, and the concept of undecidability.
2. Lists, Stacks, and Queues

¢ Be able to work with these structures, using abstract operations or implementing new
operations as needed.

3. Recursion

e Be able to trace how a given recursive procedure, function, or definition works on given
input(s).
e Be able to write a recursive procedure or function to accomplish some task, particularly
involving the structures studied since the midterm: heaps, priority queues, and graphs.
4. Trees
e Be able to write recursive or iterative functions that operate on general trees, plain
binary trees, binary search trees, or B-trees with a given node structure.

¢ Be able to answer questions on balancing techniques.
5. Hashing

e Be able to show how open addressing works with various collision-handling schemes
(linear probing, quadratic probing, double hashing, rehashing or some given scheme) on
given data.

e Be able to show how extendable hashing works on given data.
¢ Be able to use hashing as a utility in the solution of application problems.

¢ Be able to analyze the complexity of given hashing schemes or algorithms that use them.
6. Priority Queues

e Be able to apply the basic operations Insert and DeleteMin to a binary heap.
¢ Be able to build a heap (either min or max) using the BuildHeap approach.
e Be able to write or analyze functions that work with binary heaps.

e Be able to show how Heapsort works on a small example.
7. Disjoint Sets

e Be able to use the union-find data structure in problems that deal with disjoint sets.



e Be able to answer questions about the various union and find variations and their com-
plexity.

8. Graphs and Digraphs

Be able to write functions that work with any of the the variations: directed graphs,
undirected graphs, weighted and unweighted graphs.

Be able to use the two different representations we covered: adjacency matrices and
adjacency lists.

Be able to show how the following algorithms work on given data:

breadth-first and depth-first search

topological sort

unweighted shortest path

Dijkstra’s algorithm for weighted shortest path

Kruskal’s algorithm for finding the minimal spanning tree of a weighted graph
the backtracking tree search algorithm for subgraph isomorphism

the branch-and-bound search for finding least-error mappings



