
1

DS.T.1

Trees

Chapter 4 Overview

• Tree Concepts

• Traversals

• Binary Trees

• Binary Search Trees

• AVL Trees

• Splay Trees

• B-Trees

DS.T.2
Terminology

Trees are hierarchic structures.

• root
• leaves
• parent
• children
• ancestors
• descendants
• path
• path length
• depth / level
• height
• subtrees

depth=0

height=0

Recursive Definition:
A tree is a set of nodes that is
 a. empty or
 b. has one node called the root from which
 zero or more trees descend.

DS.T.3

General (n-ary) Arithmetic Expression Tree

(A + B + ((C * D * E) / F) + G) - H

How can we implement general trees with
whose nodes can have variable numbers of
children?

DS.T.4

Common Traveral Orders for General Trees

• Preorder

• Postorder

void print_preorder (TreeNode T)
{
TreeNode P;
if (T == NULL) return;
else {
 print T-> Element;
 P = T -> FirstChild;
 while (P != NULL)
 {
 print_preorder (P);
 P = P -> NextSibling;
 }
 }
}

DS.T.5

(A + B + ((C * D * E) / F) + G) - H

A binary tree is a tree in which each node
has two subtrees--left and right.

Either or both may be empty.

What operations are required for a binary tree?
That depends …

DS.T.6

• Binary Arithmetic Expression Trees

• Binary Decision Trees

• Binary Search Trees

• construct from infix expression
• add or delete nodes
• traverse in preorder to produce prefix expression
• traverse in postorder to evaluate
• traverse in inorder to output infix expression

2

DS.T.7

Recursive Preorder Traversal

void RPT (TreeNode T)
{
if (T != NULL) {
 “process” T -> Element;

}

Preorder Traversal with a Stack

void SPT (TreeNode T, Stack S)
{
if (T == NULL) return; else push(T,S);
while (!isempty(S)) {
 T = pop(S);
 “process” T -> Element;
 if (T -> Right != NULL) push(T -> Right, S);
 if (T -> Left != NULL) push(T -> Left, S);
 }
}

DS.T.8

Binary Search Trees

Search trees are look-up tables that are
used to find a given key value and return
associated data.

Example: look up SSN, return name and address.

A binary tree satisfies the ordering property
if the key value in any given node is

 > all key values in the node’s left subtree
 ≤ all key values in the node’s right subtree

10

6

2 7

19

DS.T.9

Operations

• Find the node with a given key

• FindMin / FindMax key in the tree

• Insert a new key (and associated data)

• Delete a key (and associated data)

Find, FindMin, FindMax, Insert are easy.

Delete is a little bit tricky.

DS.T.10

Deletion of a Node from a Binary Search Tree

1. Find the node with the given key value.

2. Delete that node from the tree.

Problem: When you delete a node, what do
you replace it by?

• If it has no children, by NULL.

• If it has one child, by that child.

• If it has two children, by the node with

the smallest key in its right subtree.

DS.T.11

1000

95 2000

60 300

120

180

T

Delete node with key 95.
DS.T.12

1000

95 2000

60 300

120

180

T

Find the node.

It has 2 children.

3

DS.T.13

1000

95 2000

60 300

120

180

T

Find smallest in its right subtree.

TmpCell

DS.T.14

1000

120 2000

60 300

120

180

T

Replace T’s key value with that of TmpCell.

TmpCell

Now delete 120
from this subtree.

DS.T.15

1000

120 2000

60 300

120

180

T

Delete 120 from this subtree T.

DS.T.16

1000

120 2000

60 300

120

180

T

Find the 120 again.

TmpCell

It has only one child.
Replace it by this child.

DS.T.17

1000

120 2000

60 300

120

180

T
TmpCell

It has only one child.
Replace it by this child
and free TmpCell.

DS.T.18

1000

120 2000

60 300

180

4

DS.T.19

What do you think of this delete procedure?

Is it readable?

Is it efficient?

How would YOU do it?

