









| DS.I.6                               |  |
|--------------------------------------|--|
| Example: VectorArray                 |  |
|                                      |  |
| Conceptual:                          |  |
| Size (of array)                      |  |
| NumElements                          |  |
| Data                                 |  |
|                                      |  |
| 0 1 Size-1                           |  |
| What abstract operations are needed? |  |
|                                      |  |
|                                      |  |
|                                      |  |
|                                      |  |





## DS.1.9 Principle of Mathematical Induction Let P(c) be true for small constant $c \ge 0$ . Suppose whenever P(k) is true, so is P(k+1). Then P(n) is true for all $n \ge 0$ . Ex. 1.10a Prove by induction that $\sum_{i=1}^{N} (2i - 1) = N^2$ . Basis: N=1 Inductive Hypothesis: Induction Step:

## DS.I.10 int sumit (int v[], int num) { if (num == 0) return 0; else return v[num-1] + sumit(v,num-1); } Prove by induction that sumit(v,n) correctly returns the sum of the first n elements of array v, n20.

Basis: If n=0,

Inductive Hypothesis: Assume sumit(v,k) ...

Inductive Step: sumit(v,k+1)