
1

DS.P.1

Priority Queues

Chapter 6 Overview

• The Concept

• Possible Implementations

• Binary Heaps

• Applications

We will NOT cover

• d-Heaps
• Leftist Heaps
• Skew Heaps
• Binomial Queues

DS.P.2

A priority queue is a ‘queue’ where the
first element out is the one with the
minimum key value, which we will take
to mean the highest priority.

Operations:

 DeleteMin Insert
 Priority Queue

Possible Implementations: complexity?

• linked list
 Insert adds to the end.
 DeleteMin has to search.

• binary search tree
 Use normal Insert and FindMin.

DS.P.3

Binary Heaps

A heap is a binary tree that is full except
for the bottom level, which is filled from
left to right.

We use an array implementation of a
binary tree, which saves memory and
can be very efficient for this purpose.

A[0] is not used.
A[1] is the root of the tree.

A[i] has children at A[2i] and A[2i+1].
A[i] has parent at A[i / 2].

13 21 16 24 31 19 What tree is this?

1 2 3 4 5 6

DS.P.4

Operations for Array Implementation

• Initialize (which also allocates)
• Destroy (which ought to delete)
• MakeEmpty
• Insert
• FindMin
• DeleteMin
• IsEmpty
• IsFull

How do we make the heap an efficient
structure for priority queue operations?

Keep it in order according to the
heap order property.

DS.P.5

Heap Order Property

for every node X of the tree:

 key(parent(X)) ≤ key(X)

This implies that

• the minimum value is at the root

• this is true of any subtree as well

13 21 16 24 31 19 13

21 16

24 31 19

DS.P.6

Inserting in a Binary Heap

Insert(X) /* pseudo-code */

- let hole be the next unfilled node in the tree

- while (X is not yet placed)
 if parent(hole) ≤ X, put X in hole
 else
 1. move the parent’s data into hole
 2. let hole be the parent’s node

We say that X percolates up the tree.

2

DS.P.7

Insertion Example

6

15 10

25 20 12 96

29 40 30 hole

insert 13

Can I put 13 in the hole?

Will the order property still hold if I move
the 20 into the hole?

DS.P.8

Insertion Example

6

15 10

25 hole 12 96

29 40 30 20

Now can I put the 13 in the hole?

DS.P.9

Insertion Example

6

hole 10

25 15 12 96

29 40 30 20

Now can I put the 13 in the hole?

DS.P.10

The implementation of Insert is very concise,
using only simple array operations and with
worst case complexity O(log n).

 6 15 10 25 20 12 96 29 40 30 hole

0 1 2 3 4 5 6 7 8 9 10 11

-∞

for (i = ++H->Size; H->Elements[i/2] > X; i /= 2)
 H->Elements[i] = H->Elements[i/2];
H->Elements[i] = X;

 6 15 10 25 hole 12 96 29 40 30 20

0 1 2 3 4 5 6 7 8 9 10 11

-∞

 6 13 10 25 15 12 96 29 40 30 20-∞

0 1 2 3 4 5 6 7 8 9 10 11

DS.P.11
DeleteMin

deleteMin

- Find the minimum value at the root

- Deleting it leaves a hole at the root.

- This hole must percolate down till
 we can place the last element in it.

- So swap it with its smaller child.

- Continue this process till the last
 element can be placed in the hole.

Try this: first draw it as a tree, then try the process.

6 15 10 25 20 12 96 29 40 30

DS.P.12

Building a Heap from Unordered Data

The idea:

- Put the data in an array.

- Start with the last internal node L.

- Percolate it down to its proper place.

- Continue this process for each internal
 node.

The code:

for (i = N / 2; i > 0; i--)
 PercolateDown(i);

3

DS.P.13

Example

16 7 9 12 5
 1 2 3 4 5

N = 5; N/5 = 2

16

7 9

12 5
1. PercolateDown(2)

16

5 9

12 7

2. PercolateDown(1)

Which is Node 1?
Try it!

DS.P.14

Complexity

• Insert ???

• DeleteMin ???

• BuildHeap

Th. The running time of BuildHeap is O(N).

• PercolateDown is called potentially for
 every nonleaf node.

• Each time, it can go all the way down,
 swapping the smallest child with its
 parent, if needed.

• This is approximately the sum of the
 of the heights of the nodes in the tree.

DS.P.15

Th. 6.1 For perfect binary tree of height h
with 2 - 1 nodes, the sum of the heights is

 2 - 1 – (h+1)

h+1

h+1

4. Therefore, for 2 nodes, the sum is O(2),

 and for N nodes, the sum is O(N).

h+1 h+1

3

2+2=4

1+1+1+1=4

Sum = 11

DS.P.16

Applications of Heaps

• job and process queues

• event queues in simulation

• sorting

event queue
random
event
generator

server

Simulation clock starts at time 0.
Instead of checking what events happen at
every tick, we just find the next event
(the one with minimum starting time)
and change the clock to that time.

Clock: 0, 5, 14, 23, 28, …

DS.P.17

Heapsort (from Chapter 7)

How can we use a heap to achieve sorting
an array into ascending order?

• Build a max heap (instead of a min heap)
 in the array.

• Use DeleteMax (which is just like
 DeleteMin) to remove the largest element.

• Put that largest element at the end of the
 array, which will have become an empty
 spot through operation of DeleteMax.

DS.P.18

Heapsort Example

50 25 30 1 3 15 28

50

25 30

1 3 15 28

max element

What does the array look like after the
max element is deleted?

Then what does it look like after the max
element is put at the end?

4

DS.P.19

Heapsort Complexity

For n elements

It takes 2n comparisons to build the heap.

After that there are n sorting steps

with 2log i comparisons at the ith step.

 2n + 2 ∑ log i

= O(n log n)

2

i=1

n

2
This term dominates.

2

