
1

DS.GR.25
Shortest Path Algorithms

Input can be:

• a graph or a digraph
• weighted or unweighted

Let c(i,j) be the cost of traversing edge (vi,vj).

Then the path length of the path
P = {v1, v2, . . . , vn}
 n-1

is ∑ c(i,i+1)
 i=1

where c(i,j) is the weight on edge (vi,vj) for a
weighted graph and is just 1 for an unweighted
graph.

DS.GR.26

Examples:

• shortest route from one city to another

• shortest number of steps to prove a theorem
 using a graph search technique.

X X

X X Proved

Shorter
Proof

Kansas

Oz

Nebraska

10

400

250
roads may not
be straight!

DS.GR.27

1. The Unweighted Shortest Path Algorithm

Let G be an unweighted digraph,
 S be a start node in G,
 Q be a queue of nodes to process,
 T be a table with the following structure

Node Known Dist Path
 s1 0 0 0
 s2 0 ∞ 0
 s3 0 ∞ 0
 s4 0 ∞ 0
 s5 0 ∞ 0

Node Known Dist Path

s1

s2

s5

s3

s4

distance
from S

prior node on
shortest path
from S

unused
in this
algorithm

identifier

S

initial
configuration

T

DS.GR.28

Node Known Dist Path
 s1 0 0 0
 s2 0 ∞ 0
 s3 0 ∞ 0
 s4 0 ∞ 0
 s5 0 ∞ 0

s1

s2

s5

s3

s4
S

How do we
get out the
full paths from
S to each node?

T

DS.GR.29

Complexity of Unweighted Shortest
 Path Algorithm

Like topological sort, when using adjacency lists,

Each node goes on the queue and comes off once.
(How is this controlled?)

Each edge is processed once. (When?)

This leads to complexity of O(|V| + |E|).

DS.GR.30

How would you go about proving correctness?

Theorem: Let w be a node at shortest distance
K from node S. Then w is put on the queue at
step K with its dist set to K.

Basis: K = 0

Inductive Hypothesis:
Suppose the theorem is true for distance k.

Induction: Let w be at distance k+1.
 Let v be the node before w in the
 shortest path from S to w.

S v w

shortest distance to v is ???

2

DS.GR.31

2. Dijkstra’s Algorithm for weighted
 digraphs with nonegative weights

This algorithm uses the same table structure
as the unweighted shortest path algorithm,
but it has to do more work.

• This time we keep track of which vertices
 have been processed.

• A node’s Dist and Path values can be updated
 any time a shorter path to it is found, which
 can occur at any iteration, up to and including
 the last node processed.

• unknown (has not yet been selected for
 processing

• known (has been selected and its adjacent
 neighbors have been updated)

DS.GR.32

The Updating Idea

v w
cvw

if (v.dist + cvw < w.dist)
 {
 w.dist = v.dist + cvw;
 w.path = v;
 }

Example:

s w

v
5

4

20

rocky
road

v.dist = 5
v.path = s

w.dist = 20
w.path = s
update node w

DS.GR.33
Dijkstra Example

0S

1

2

3

2

5

1

10

6

Node Known Dist Path
 0 0 0 -1
 1 0 ∞ -1
 2 0 ∞ -1
 3 0 ∞ -1

v ← 0; 0 becomes known;
1 and 2 are adjacent to v and both unknown.
 w ← 1; 0 + 2 < ∞; update 1.dist to 2 and
 1.path to 0
 w ← 2; 0 + 5 < ∞; update 2.dist to 5 and
 2.path to 0
v ← 1 (WHY?); 1 becomes known;
2 and 3 are adjacent to 1 and both unknown.

DS.GR.34

Correctness: can be proved if there are no
 negative weights
Complexity: (read it)

The complexity depends on how you find
the unknown node with the smallest dist.

• If you search through all the nodes, you get
 O(|E| + |V|) = O(|V|)

• If you keep a priority queue of nodes
 according to their dists, you can get down to

 O(|E| log |V|)

2 2

each edge once searching |V| times
 for updates

OK for dense graphs

Good for sparse graphs
when |E| << |V| 2

DS.GR.35
Negative Weights

What if there are negative weights?

The Dijkstra algorithm fails, because in
this case, a known vertex can still change.

0 1 2 310

1

1 1

-5

Consider the path from 0 to 3 given by

0 to 1 to 2 to 1 to 3
 10 + 1 + -5 + 1 = 7

There’s a problem here with both the
negative weight and the loop!

The algorithm in the text works if there are
no negative cost cycles.

DS.GR.36
Network Flow Problems

Given a weighted directed graph whose
weights represent edge capacities in a
flow network where:

Determine the maximum flow that
can pass from s to t.

(No “best” algorithm is given.)

• Through any edge (v,w), at most
 cvw units of “flow” may pass.

• At any vertex v that is not s or t,
 the total flow in must equal the
 total flow out.

• Vertex s, the source, has only outgoing
 flow.

• Vertex t, the sink, has only incoming
 flow.

3

DS.GR.37
Minimal Spanning Tree

A minimal spanning tree (MST) of an
undirected, connected, weighted graph G
is a tree that includes

 1. all nodes of G
 2. |V| - 1 edges, connecting these nodes
 with no cycles

and such that the sum of the weights on
these edges is smallest among all possible
spanning trees.

1

2

3

5

4 1

2

3

4

5

8 9

20 25

3 2
12

6

DS.GR.38

Kruskal’s Algorithm: fastest in practice

Data Structures:

• priority queue H

2. union-find structure S

• implemented as a heap
• each entry is an edge of G
• ordered by the edge weights
• DeleteMin removes the smallest edge

• set of trees, each representing a connected
 component of the MST being built
• initialized to single-node trees, one per
 vertex of G
• an edge (u,v) can only be added to the MST
 if u and v are in separate component trees
• when (u,v) is added to the MST, their sets
 are unioned in S

DS.GR.39

Idea of the algorithm:

Select and remove the edge with smallest
weight from H.

Add it to MST if it does NOT cause a cycle,
which will be if the two nodes defining the
edge are in separate equivalence classes.

If you added the edge, then union the 2 classes.

1

2 5

3 4

1

2

3

4

5

What happens when it selects (1,2),
then (1,3), and then (2,3)?

DS.GR.40

Worst-Case Complexity:

 O(|E| log |E|)

choosing edge heap operations

Application: Image Segmentation

- Each node represents a small square block.
- An edge contains two adjacent blocks.
- The weight on an edge is the gray-tone distance
 between its two blocks.

 0 0 50 51
 0 1 51 52
• 301 50 52
300 300 51 51

Make a node for each
of the 16 blocks. Connect
each adjacent pair with the
distance between their given
gray-tone values.

DS.GR.41

Depth-First Search and Breadth-First Search
(of a directed graph)

Search a graph in a particular node order:

• depth first search
 visit a node, then its first child, then its
 first child’s first child, etc.

• breadth-first search
 visit a node, then each of its children,
 then each of their children, etc.

1

2

3 4 5

6

1

2

4

3

65

DS.GR.42

Depth-first search can be done recursively
or with a stack.

Breadth-first search uses a queue.

procedure BreadthFirstSearch {
 for K = 1 to NumberOfNodes
 Visited[K] = false;
 Enqueue(Start,Q);
 Visited[Start] = true;

 while (¬ isempty(Q))
 {
 V = Dequeue(Q);
 process(V);
 for each node W adjacent to V
 if (¬ Visited[W])
 {Enqueue(W,Q); Visited[W] = true;}
 }
}

4

DS.GR.43

NP-Completeness

Most problems we have studied have a
polynomial complexity algorithm.

This includes both the algorithms whose
complexity IS a polynomial such as

 O(N)

and algorithms whose complexity can be
bounded by a polynomial, such as

 O(|E||V|log(|V| /|E|))

A few algorithms we have studied have
worse complexity than any polynomial.

Which algorithms are these? What complexity?

3

2

DS.GR.44Undecidability

Another class of problems is those that
are so hard that they are impossible to solve
with finite resources. This is the class of
undecidable problems.

The halting problem is the classical example
of an undecidable problem. The problem is
to design a program that can check any program
(including itself) to determine if it will halt in a
finite amount of time.

Let LOOP be such a program designed so that
 LOOP(P) halts and prints YES if P(P) does
 not halt.
 LOOP(P) goes into an infinite loop if P(P) halts.

Now run LOOP(LOOP). It will then
 halt and print yes if LOOP(LOOP) does not halt
 or go into an infinite loop if LOOP(LOOP) halts.

Since this is a contradiction, LOOP cannot exist.

DS.GR.45

The Class NP

There are problems that are in-between
polynomial and unsolvable.

P is the class of polynomial-time problems.

NP is the class of nondeterministic polynomial
time problems.

What is nondeterministic polynomial time?

It is the time that a procedure would take to
execute on a nondeterministic machine,

that is, a machine that when it comes to a
state where it must make a choice, can try
all alternatives in parallel.

Where can I buy this kind of machine?

DS.GR.46

The Satisfiability Problem

The satisfiability problem takes as input
a boolean expression B over some set of N
boolean variables.

The problem is to determine an assignment
of values to the variables to make B true.

Example: B = (v1 ∨ v2) ∧ v3

There are 3 variables and 2 possible assignments.3

v1 F F F F T T T T
v2 F F T T F F T T
v3 F T F T F T F T
 B F F F T F T F T

In worst case,
we might try
all of them,
before finding
a solution.

DS.GR.47

The satisfiability problem is NP-complete.

All other NP-complete problems can
be reduced to any given NP-complete problem,
such as the satisfiability problem.

The subgraph isomorphism problem belongs
to a set of problems called consistent-labeling
problems, which are NP-complete.

The problem of finding relational distance
between two graphs is also NP-complete.

The problem of determining if a graph has a
Hamiltonian cycle (a simple cycle that includes
every vertex) is NP-complete.

The traveling salesman problem (given a complete
graph with edge costs, is there a simple cycle that
visits every vertex and has cost less than K)
is NP-complete.

DS.GR.48

How do we solve NP-complete problems?

We try to design smart search procedures.

Instead of blindly trying every possibility
in a huge search space, we try to arrange
the search to prune the search space as
much as possible.

Many of the techniques devised for pattern
recognition and for artificial intelligence
are smart searches.

