DSGR.25
Shortest Path Algorithms

Input can be:

« agraph or adigraph
« weighted or unweighted

Let c(i,j) be the cost of traversing edge (vi,vj).

Then the path length of the path
P={v1,v2,...,vn}

n1
is X c(ii+)

i=1

where c(i j) is the weight on edge (vi,vj) for a
weighted graph and isjust 1 for an unweighted

graph.

DS.GR.26

Examples:

« shortest route from one city to another

10 @ 2% roads may not
- be straight!
Kansas
e

« shortest number of steps to prove atheorem
using a graph search technique.

9

DS.GR.27
1. The Unweighted Shortest Path Algorithm

Let G be an unweighted digraph,
Shbeastat nodein G,
Q be aqueue of nodes to process,
T be atable with the following structure

identifier unused distance prior node on
inthis fromS shortest path
agorithm froms

@—
S,
®/' ©

Shorter
X % Proof
X X Proved
DSGR28

@—
S,
®/' ©

T Node Known Dist Path
sl 0 0 0 nitial
initi
2 0 el 0 configuration
3 0 oo 0
4 0 oo 0
E3 0 oo 0
DS.GR.29

Complexity of Unweighted Shortest
Path Algorithm

Like topologica sort, when using adjacency lists,

Each node goes on the queue and comes off once.

(How isthis controlled?)
Each edge s processed once. (When?)

Thisleadsto complexity of O([V|+ [E|).

T Node Known Dist Path

sl 0 0 0 How d

ow do we
2 0 el 0 get out the
3 0 oo O| full paths from
4 0 oo 0| Stoeachnode?
5 0 oo 0

DS.GR.30

How would you go about proving correctness?

Theorem: Letw beanode a shortest distance
K from node S. Thenw is put on the queue at
step K with its dist set to K.

Basis: K=0

Inductive Hypothesis:
Suppose the theorem is true for distance k.

Induction: Letw be a distance k+1.
Let v bethe node beforew inthe
shortest path from Sto w.

GO— —L—

shortest distance to v is 772

DS.GR.31

2. Dijkstra’s Algorithm for weighted
digraphswith nonegative weights

This algorithm uses the same table structure
as the unweighted shortest path algorithm,
but it has to do more work.

* Thistime we keep track of which vertices
have been processed.
«unknown (has not yet been selected for
processing

*known (has been selected and its adjacent
neighbors have been updated)

* A node'sDist and Path values can be updated
any time a shorter path to it is found, which
can occur at any iteration, up to and including
the last node processed.

DS.GR.33

Dijkstra Example

Vv« 0; 0 becomes known;
1and 2 are adjacent to v and both unknown.
W« 1;0+2< o; update 1.dist to 2 and
1lpathto O
W« 2;0+5< o; update 2.dist to5 and
2.pathto 0
V1 (WHY?); 1 becomes known;
2 and 3 are adjacent to 1 and both unknown.

DS.GR.32
The Updating Idea
C ow C
if (v.dist + cvw < w.dist)
w.dist = v.dist + cvw;
w.path =v;
}
Example:
20,
focky wdist = 20
5 wpath=s
@ 4 update node w
vdist=5
v.path=s
DSGR.34
Correctness: can be proved if there are no
negative weights

Complexity: (read it)

The complexity depends on how you find
the unknown node with the smallest dist.

« If you search through dl the nodes, you get
O(Ig| +|V]2) = O(V|
(& +IV]2) (VE) OK for dense graphs
each edgeonce searching |V|times
for updates

« If you keep apriority queue of nodes
according to ther dists, you can get down to

O(|E[log [V]) Good for sparse graphs
when [E] << V| 2

DSGR.35
Negative Weights

What if there ar e negative weights?

The Dijkstraalgorithm fail s, becausein
this case, a known vertex can till change.

1
10 1
OGO
5
Consider the path from 0 to 3 given by

Oto 1to2tolto3
10+ 1 + -5+ 1 =7

There's a problem here with both the
negative weight and the loop!

The agorithm in the text works if there are
no negative cost cycles.

DS.GR.36
Network Flow Problems

Given aweighted directed graph whose
weights represent edge capacitiesina
flow network where:

« Through any edge (v,w), at most
cvw units of “flow” may pass.

* Atany vertex v thatisnot sor t,
thetotal flow in must equal the
total flow out.

« Vertex s, the source, has only outgoing
flow.

« Vertex t, the sink, has only incoming
flow.

Determine the maximum flow that
can passfromstot.

(No “best” algorithm is given.)

DSGR.37
Minimal Spanning Tree

A minimal spanning tree (MST) of an
undirected, connected, weighted graph G
isatreethat includes

1. &l nodesof G
2. |V| - 1 edges, connecting these nodes
with no cycles

and such that the sum of the weights on
these edgesis smallest anong all possible
spanning trees.

DS.GR.38
Kruskal’s Algorithm: fastest in practice
Data Structures:
* priority queue H
« implemented as a heap
« each entry isan edge of G

« ordered by the edge weights
« DeleteMin removes the smallest edge

N

union-find structure S

« set of trees, each representing a connected
component of the MST being built

« initialized to single-node trees, one per
vertex of G

« an edge (u,v) can only be added to the M ST
if uand v arein separate component trees

« when (u,v) is added to the MST, their sets
areunionedin S

DS.GR.39

Idea of the agorithm:

Select and remove the edge with smallest
weight from H.

Addit to MST if it does NOT cause a cycle,
which will beif the two nodes defining the
edge are in separate equivalence classes.

If you added the edge, then union the 2 classes.

What happens when it selects (1,2),
then (1,3), and then (2,3)?

DS.GR.40
Worst-Case Complexity:

OC(|Ellog [E])
choosing edge(l:esp operations

Application: Image Segmentation

- Each node represents a small square block.

- An edge contains two adjacent blocks.

- The weight on an edge is the gray-tone distance
between its two blocks.

Make anode for each

0| 0150I51) of the 16 blocks. Connect

0] 1]5182| gqpp adjacent pair with the
+ |301150\52| distance between their given
300[300[51|51 gray-tone values.

DS.GR.41

Depth-First Search and Breadth-First Search
(of adirected graph)

Search agraph in a particular node order:
« depthfirst search

vidt anode, thenitsfirst child, thenits
first child’sfirst child, etc.

o

e
o oo
« breadth-first search

vidt anode, then each of its children,
then each of their children, etc.

%o
@

DS.GR.42

Depth-first search can be done recursively
or withastack.

Breadth-first search uses a queue.

procedure BreadthFirstSearch {
for K =1 to NumberOf Nodes
Visited[K] = fdse;
Enqueue(Start,Q);
Visited[Start] = trug;

while (— isempty(Q))

V = Dequeue(Q);
process(V);
for each node W adjacent to vV
if (= Visited[W])
{Enqueue(W,Q); Visited[W] = true;}

DS.GR.43

NP-Completeness

Most problems we have studied have a
polynomia complexity agorithm.

Thisincludes both the agorithms whose
complexity |Sa polynomial such as

o

and algorithms whose complexity can be
bounded by a polynomid, such as

O(EIV log(V /ED)

A few algorithms we have studied have
worse complexity than any polynomia.

Which dgorithms are these? What complexity?

Undecidability DS.GR.44

Another class of problemsis those that

are so hard that they areimpossible to solve
with finite resources. Thisis the class of
undecidable problems.

The halting problemis the classicd example

of an undecidable problem. The problemis

to design a program that can check any program
(including itsdf) to determineiif it will hatina
finite amount of time.

Let LOOP be such a program designed so that
LOOP(P) hats and prints YES if P(P) does
not hat.
LOOP(P) goesinto an infinite loop if P(P) halts.
Now run LOOP(LOOP). It will then
halt and print yesif LOOP(LOOP) does not halt
or gointo an infinite loop if LOOP(L OOP) halts.

Sincethisis a contradiction, LOOP cannot exist.

DS.GR.45
TheClassNP

There are problems that are in-between
polynomia and unsolvable.

Pisthedass of polynomid-time problems.

NPisthe class of nondeterministic polynomia
time problems.

What is nondeterministic polynomial time?

It is the time that a procedure would take to
execute on a nondeterministic machine,

that is, amachine that when it comesto a
state where it must make a choice, can try
all alternativesin parallel.

Where can | buy this kind of machine?

DS.GR.46

The Satisfiability Problem

The satisfiability problem takes asinput
aboolean expression B over some set of N
boolean variables.

The problem is to determine an assignment
of vaues to the variables to make B true.

Example: B = (v1vv2) A V3

DS.GR47
The satisfiability problem is NP-complete.

All other NP-complete problems can
be reduced to any given NP-compl ete problem,
such as the stisfiability problem.

The subgraph isomorphism problem belongs
to a set of problems called consistent-labeling
problems, which are NP-complete.

The problem of finding relational distance
between two graphsis also NP-complete.

The problem of determining if agraph hasa
Hamiltonian cycle (asimple cycle that includes
every vertex) is NP-complete.

The traveling salesman problem (given acomplete
graph with edge costs, is there asimple cycle that
visits every vertex and has cost less than K)

is NP-complete.

There are 3 variables and 22 possible assignments.
VLFFFFTTTT| Inworstcase
V2FFTTFFTT| wemighttry
V3FTFTFTFT| dlofthem,
BFEFEFTETE T| beforefinding
asolution.
DSGR48

How do we solve NP-complete problems?

Wetry to design smart search procedures.

Instead of blindly trying every possibility
inahuge search space, wetry to arrange
the search to prune the search space as
much as possible.

Many of the techniques devised for pattern
recognition and for artificia intelligence
are smart searches.

