

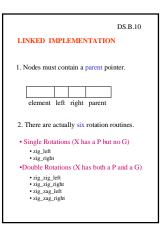
The analysis is rather advanced and is in Chapter 11. We won't cover it.

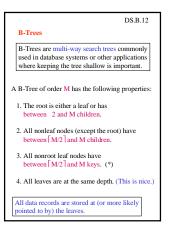
Result of Analysis:

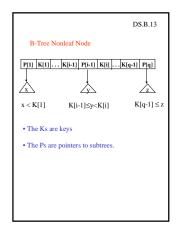
Any m operations on a splay tree of size n take $O(m \log n)$ time.

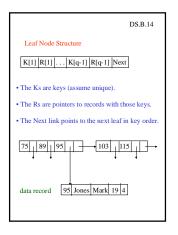
The amortized running time for one operation is O(log n).

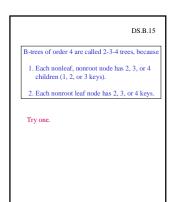
This guarantees that even if the depths of some nodes get very large, you can't get a big sequence of O(n) searches, because each one causes a rebalance.



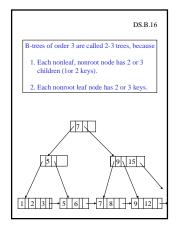


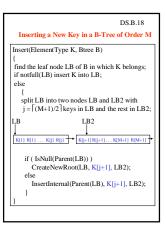


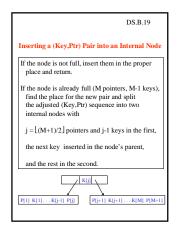


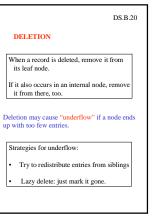












DS.B.21
COMPLEXITY
• Find: $O(\log_{M/2} N)$ (depth of tree)
• Insert/Delete: O(M log _M N)

DS.B.22

How Do We Select the Order M?

 In internal memory, small orders, like 3 or 4 are fine.

 On disk, we have to worry about the number of disk accesses to search the index and get to the proper leaf.

Rule: Choose the largest M so that an internal node can fit into one physical block of the disk.

This leads to typical M's between 32 and 256 And keeps the trees as shallow as possible.