
1

DS.B.1

Balanced Search Trees

In a balanced tree, all leaf nodes are at
(approximately) the same level.

• AVL Trees were the first ones (1962).

• Splay Trees come from self-organizing trees (1978+).

• B-Trees are multiway search used for databases (1972+)

yes not really

0

1

2

3

4

DS.B.2

AVL Trees

(Adelson-Velskii and Landis, 1962)

AVL trees are binary search trees that
are maintained as height-balanced.

This means:

• They are excellent for searching (log N).

• There is extra work on insertion and deletion.

DS.B.3

Height-Balancing

The balance-factor of a node of a binary search
tree is:

 height(left subtree) - height(right subtree)

A height-balanced tree has balance factor of
-1, 0, or 1 at every node.

That is, the height of the left and right subtrees
of each node differ by at most 1.

Examples:

DS.B.4

How does this affect insertion?

Inserting a new node can cause a balanced
tree to become unbalanced.

But only those nodes on the path from the
insertion point to the root can have their
balances altered.

We rebalance the tree by rebalancing the
deepest such node.

BF = 1

BF = 0

BF = 0 BF = 0

BF = 1

BF = 0

BF = 0BF = 0

BF = 0

Tree before insertion.

DS.B.5

A new node is inserted.

Which is the deepest node with |BF| > 1?

BF =

BF =

BF = BF =

BF =

BF =

BF =BF =

BF =

Tree after insertion.

BF = 0

DS.B.6

Let the node that needs rebalancing be α.

There are 4 cases:

 Outside Cases (require single rotation) :

 - Insertion into left subtree of left child of α.

 - Insertion into right subtree of right child of α.

 Inside Cases (require double rotation) :

 - Insertion into right subtree of left child of α.

 - Insertion into left subtree of right child of α.

The rebalancing is performed through
four separate rotation algorithms.

2

DS.B.7

Should we always use AVL trees instead
of ordinary binary search trees?

Arguments for AVL trees:

 1. Search is O(log N), since AVL trees are
 always balanced.

 2. The height balancing adds no more than a
 constant factor to the speed of insertion.

Arguments against always using AVL trees:

 1. It’s nasty to program.

 2. It IS SLOWER on most inserts (that
 constant of complexity thing).

 3. Most large searches are done in database
 systems on DISK and use other structures.

 4. Internal trees need not be always balanced.

DS.B.8

SPLAY TREES

Splay trees are internal tree structures that

 1. Are not perfectly balanced all the time

 2. Let the actual retrievals force rebalancing
 that benefits future retrievals

Using the heuristic:

If X is accessed once, it is likely to be
accessed again.

-After node X is accessed, perform splaying
 operations to bring it up to the root of the tree.

-Do this in a way that leaves the tree more
 balanced as a whole.

DS.B.9

• Let X be a nonroot node with ≥ 2 ancestors.

• Let P be its parent node.

• Let G be its grandparent node.

DETAILS

P

G

X

G

P

Will X always have a P and a G?

X

G

P

X

G

P

X

DS.B.10

LINKED IMPLEMENTATION

1. Nodes must contain a parent pointer.

element left right parent

2. There are actually six rotation routines.

• Single Rotations (X has a P but no G)

•Double Rotations (X has both a P and a G)

• zig_left
• zig_right

• zig_zig_left
• zig_zig_right
• zig_zag_left
• zig_zag_right

DS.B.11

COMPLEXITY OF SPLAYING

The analysis is rather advanced and is in
Chapter 11. We won’t cover it.

Result of Analysis:

Any m operations on a splay tree of size n
take O(m log n) time.

The amortized running time for one operation
 is O(log n).

This guarantees that even if the depths of
some nodes get very large, you can’t get
a big sequence of O(n) searches, because
each one causes a rebalance.

DS.B.12

B-Trees

B-Trees are multi-way search trees commonly
used in database systems or other applications
where keeping the tree shallow is important.

A B-Tree of order M has the following properties:

 1. The root is either a leaf or has
 between 2 and M children.

 2. All nonleaf nodes (except the root) have
 between M/2 and M children.

 3. All nonroot leaf nodes have
 between M/2 and M keys. (*)

 4. All leaves are at the same depth. (This is nice.)

All data records are stored at (or more likely
pointed to by) the leaves.

3

DS.B.13

B-Tree Nonleaf Node

P[1] K[1] . . . K[i-1] P[i-1] K[i] . . . K[q-1] P[q]

y zx

x < K[1] K[i-1]≤y<K[i] K[q-1] ≤ z

• The Ks are keys

• The Ps are pointers to subtrees.

DS.B.14

Leaf Node Structure

K[1] R[1] . . . K[q-1] R[q-1] Next

• The Ks are keys (assume unique).

• The Rs are pointers to records with those keys.

• The Next link points to the next leaf in key order.

75 89 95 103 115

95 Jones Mark 19 4data record

DS.B.15

B-trees of order 4 are called 2-3-4 trees, because

 1. Each nonleaf, nonroot node has 2, 3, or 4
 children (1, 2, or 3 keys).

 2. Each nonroot leaf node has 2, 3, or 4 keys.

Try one.

DS.B.16

B-trees of order 3 are called 2-3 trees, because

 1. Each nonleaf, nonroot node has 2 or 3
 children (1or 2 keys).

 2. Each nonroot leaf node has 2 or 3 keys.

1 2 3 5 6 7 8 9 12

 5 9 15

 7

DS.B.17

Searching a B-Tree T for a Key Value K

Find(ElementType K, Btree T)
{
B = T;
while (B is not a leaf)
 {
 find the Pi in node B that points to
 the proper subtree that K will be in;

 B = Pi;
 }

/* Now we’re at a leaf */

if key K is the jth key in leaf B,
 use the jth record pointer to find the
 associated record;
else /* K is not in leaf B */ report failure;
}

How would you search for a key in a node?

DS.B.18

Inserting a New Key in a B-Tree of Order M

Insert(ElementType K, Btree B)
{
 find the leaf node LB of B in which K belongs;
 if notfull(LB) insert K into LB;
 else
 {
 split LB into two nodes LB and LB2 with
 j = (M+1)/2 keys in LB and the rest in LB2;

 if (IsNull(Parent(LB)))
 CreateNewRoot(LB, K[j+1], LB2);
 else
 InsertInternal(Parent(LB), K[j+1], LB2);
 }
}

K[1] R[1] . . . K[j] R[j] K[j+1] R[j+1] . . . K[M+1] R[M+1]

LB LB2

4

DS.B.19

Inserting a (Key,Ptr) Pair into an Internal Node

If the node is not full, insert them in the proper
 place and return.

If the node is already full (M pointers, M-1 keys),
 find the place for the new pair and split
 the adjusted (Key,Ptr) sequence into two
 internal nodes with

 j = (M+1)/2 pointers and j-1 keys in the first,

 the next key inserted in the node’s parent,

 and the rest in the second.

P[1] K[1] . . . K[j-1] P[j] P[j+1] K[j+1] . . . K[M] P[M+1]

 K[j]

DS.B.20

DELETION

When a record is deleted, remove it from
 its leaf node.

If it also occurs in an internal node, remove
 it from there, too.

Deletion may cause “underflow” if a node ends
up with too few entries.

Strategies for underflow:

• Try to redistribute entries from siblings

• Lazy delete: just mark it gone.

DS.B.21

COMPLEXITY

• Find: O(log N) (depth of tree)

• Insert/Delete: O(M log N)

M/2

M

DS.B.22

How Do We Select the Order M?

- In internal memory, small orders, like 3 or 4
 are fine.

- On disk, we have to worry about the number
 of disk accesses to search the index and get
 to the proper leaf.

Rule: Choose the largest M so that an internal
node can fit into one physical block of the disk.

This leads to typical M’s between 32 and 256
And keeps the trees as shallow as possible.

