
Chapter 3

Binary Image Analysis

3.1 Connected Components Labeling

Suppose that B is a binary image and that B(r; c) = B(r0; c0) = v where either v = 0 or

v = 1. The pixel (r; c) is connected to the pixel (r0; c0) with respect to value v if there is a

sequence of pixels (r; c) = (r0; c0); (r1; c1); : : : ; (rn; cn) = (r0; c0) in which B(ri; ci) = v; i =

0; : : : ; n, and (ri; ci) neighbors (ri�1; ci�1) for each i = 1; : : : ; n. The sequence of pixels

(r0; c0); : : : ; (rn; cn) forms a connected path from (r; c) to (r0; c0). A connected component of
value v is a set of pixels C, each having value v, and such that every pair of pixels in the

set are connected with respect to v. Figure 3.1a) shows a binary image with �ve such con-

nected components of 1's; these components are actually connected with respect to either

the eight-neighborhood or the four-neighborhood de�nition.

1 Definition A connected components labeling of a binary image B is a labeled image
LB in which the value of each pixel is the label of its connected component.

A label is a symbol that uniquely names an entity. While character labels are possi-

ble, positive integers are more convenient and are most often used to label the connected

components. Figure 3.1b) shows the connected components labeling of the binary image of

Figure 3.1a).

There are a number of di�erent algorithms for the connected components labeling op-

eration. Some algorithms assume that the entire image can �t in memory and employ a

simple, recursive algorithm that works on one component at a time, but can move all over

the image while doing so. Other algorithms were designed for larger images that may not �t

in memory and work on only two rows of the image at a time. Still other algorithms were de-

signed for massively parallel machines and use a parallel propagation strategy. We will look

at two di�erent algorithms in this chapter: the recursive search algorithm and a row-by-row

algorithm that uses a special union-�nd data structure to keep track of components.

A Recursive Labeling Algorithm

Suppose that B is a binary image with MaxRow + 1 rows and MaxCol + 1 columns. We

wish to �nd the connected components of the 1-pixels and produce a labeled output image

1

2 Computer Vision: Mar 2000

1 1 0 1 1 1 0 1

1 1 0 1 0 1 0 1

1 1 1 1 0 0 0 1

0 0 0 0 0 0 0 1

1 1 1 1 0 1 0 1

0 0 0 1 0 1 0 1

1 1 0 1 0 0 0 1

1 1 0 1 0 1 1 1

1 1 0 1 1 1 0 2

1 1 0 1 0 1 0 2

1 1 1 1 0 0 0 2

0 0 0 0 0 0 0 2

3 3 3 3 0 4 0 2

0 0 0 3 0 4 0 2

5 5 0 3 0 0 0 2

5 5 0 3 0 2 2 2

a) binary image b) connected components labeling

c) binary image and labeling, expanded for viewing

Figure 3.1: A binary image with �ve connected components of the value 1.

LB in which every pixel is assigned the label of its connected component. The strategy,

adapted from the TanimotoAI text, is to �rst negate the binary image, so that all the 1-pixels

become -1's. This is needed to distinguish unprocessed pixels (-1) from those of component

label 1. We will accomplish this with a function called negate that inputs the binary imageB

and outputs the negated image LB, which will become the labeled image. Then the process

of �nding the connected components becomes one of �nding a pixel whose value is -1 in LB,

assigning it a new label, and calling procedure search to �nd its neighbors that have value -1

and recursively repeat the process for these neighbors. The utility function neighbors(L,P)
is given a pixel position de�ned by L and P. It returns the set of pixel positions of all of its

neighbors, using either the 4-neighborhood or 8-neighborhood de�nition. Only neighbors

that represent legal positions on the binary image are returned. The neighbors are returned

in scan-line order as shown in Figure 3.2. The recursive connected components labeling

algorithm is a set of six procedures, including negate, print, and neighbors, which are left

for the reader to code.

1

2 * 3

4

1 2 3

4 * 5

6 7 8

a) four-neighborhood b) eight-neighborhood

Figure 3.2: Scan-line order for returning the neighbors of a pixel.

Figure 3.3 illustrates the application of the recursive connected components algorithm

Shapiro and Stockman 3

Compute the connected components of a binary image.

B is the original binary image.

LB will be the labeled connected component image.

procedure recursive connected components(B, LB);

f
LB := negate(B);

label := 0;

�nd components(LB, label);

print(LB);

g

procedure �nd components(LB, label);

f
for L := 0 to MaxRow

for P := 0 to MaxCol

if LB[L,P] == -1 then

f
label := label + 1;

search(LB, label, L, P);

g
g

procedure search(LB, label, L, P);

f
LB[L,P] := label;

Nset := neighbors(L, P);

for each (L',P') in Nset

f
if LB[L',P'] == -1

then search(LB, label, L', P');

g
g

Algorithm 1: Recursive Connected Components

4 Computer Vision: Mar 2000

to the �rst (top leftmost) component of the binary image of Figure 3.1.

Step 1.

-1 -1 0 -1 -1 -1

-1 -1 0 -1 0 0

-1 -1 -1 -1 0 0

Step 2.

1 -1 0 -1 -1 -1

-1 -1 0 -1 0 0

-1 -1 -1 -1 0 0

Step 3.

1 1 0 -1 -1 -1

-1 -1 0 -1 0 0

-1 -1 -1 -1 0 0

Step 4.

1 1 0 -1 -1 -1

1 -1 0 -1 0 0

-1 -1 -1 -1 0 0

Step 5.

1 1 0 -1 -1 -1

1 1 0 -1 0 0

-1 -1 -1 -1 0 0

Figure 3.3: The �rst �ve steps of the recursive labeling algorithm applied to the �rst com-

ponent of the binary image of Figure 3.1. The image shown is the (partially) labeled image

LB. The boldface pixel of the image is the one being processed by the search procedure.

Using the neighborhood orderings shown in Figure 3.2, the �rst unprocessed neighhbor of

the boldface pixel whose value is -1 is selected at each step as the next pixel to be processed.

A Row-by-Row Labeling Algorithm

The classical algorithm, deemed so because it is based on the classical connected components

algorithm for graphs, was described in Rosenfeld and Pfaltz (1966). The algorithm makes

two passes over the image: one pass to record equivalences and assign temporary labels and

the second to replace each temporary label by the label of its equivalence class. In between

the two passes, the recorded set of equivalences, stored as a binary relation, is processed to

determine the equivalence classes of the relation. Since that time, the union-�nd algorithm,

which dynamically constructs the equivalence classes as the equivalences are found, has been

widely used in computer science applications. The union-�nd data structure allows e�cient

construction and manipulation of equivalence classes represented by tree structures. The

addition of this data structure is a useful improvement to the classical algorithm.

Union-Find Structure The purpose of the union-�nd data structure is to store a collec-

tion of disjoint sets and to e�ciently implement the operations of union (merging two sets

into one) and �nd (determining which set a particular element is in). Each set is stored as

Shapiro and Stockman 5

PARENT

1 2 3 4 5 6 7 8

2 3 0 3 7 7 0 3

3

2 4 8 5 6

1

7

Figure 3.4: The union-�nd data structure for two sets of labels. The �rst set contains the

labels f 1,2,3,4,8 g , and the second set contains labels f 5,6,7 g . For each integer label i,

the value of PARENT [i] is the label of the parent of i or zero if i is a root node and has

no parent.

a tree structure in which a node of the tree represents a label and points to its one parent

node. This is accomplished with only a vector array PARENT whose subscripts are the

set of possible labels and whose values are the labels of the parent nodes. A parent value

of zero means that this node is the root of the tree. Figure 3.4 illustrates the tree structure

for two sets of labels f 1,2,3,4,8 g and f 5,6,7 g . Label 3 is the parent node and set label

for the �rst set; label 7 is the parent node and set label for the second set. The values in

array PARENT tell us that nodes 3 and 7 have no parents, label 2 is the parent of label

1, label 3 is the parent of labels 2, 4, and 8, and so on. Note that element 0 of the array is

not used, since 0 represents the background label, and a value of 0 in the array means that

a node has no parent.

Find the parent label of a set.

X is a label of the set.

PARENT is the array containing the union-�nd data structure.

procedure �nd(X, PARENT);

f
j := X;

while PARENT[j] <> 0

j := PARENT[j];

return(j);

g

Algorithm 2: Find

The �nd procedure is given a label X and the parent array PARENT . It merely follows

the parent pointers up the tree to �nd the label of the root node of the tree that X is

6 Computer Vision: Mar 2000

Construct the union of two sets.

X is the label of the �rst set.

Y is the label of the second set.

PARENT is the array containing the union-�nd data structure.

procedure union(X, Y, PARENT);

f
j := X;

k := Y;

while PARENT[j] <> 0

j := PARENT[j];

while PARENT[k] <> 0

k := PARENT[k];

if j <> k then PARENT[k] := j;

g

Algorithm 3: Union

in. The union procedure is given two labels X and Y and the parent array PARENT . It

modi�es the structure (if necessary) to merge the set containing X with the set containing

Y . It starts at labels X and Y and follows the parent pointers up the tree until it reaches

the roots of the two sets. If the roots are not the same, one label is made the parent of the

other. The procedure for union given here arbitrarily makes X the parent of Y . It is also

possible to keep track of the set sizes and to attach the smaller set to the root of the larger

set; this has the e�ect of keeping the tree depths down.

The Classical Connected Components Algorithm using Union-Find The union-

�nd data structure makes the classical connected components labeling algorithm more ef-

�cient. The �rst pass of the algorithm performs label propagation to propagate a pixel's

label to its neighbors to the right and below it. Whenever a situation arises in which two

di�erent labels can propagate to the same pixel, the smaller label propagates and each such

equivalence found is entered in the union-�nd structure. At the end of the �rst pass, each

equivalence class has been completely determined and has a unique label, which is the root

of its tree in the union-�nd structure. A second pass through the image then performs a

translation, assigning to each pixel the label of its equivalence class.

The procedure uses two additional utility functions: prior neighbors and labels. The

prior neighbors function returns the set of neighboring 1-pixels above and to the left of a

given one and can be coded for a 4-neighborhood (in which case the north and west neigh-

bors are returned) or for an 8-neighborhood (in which case the northwest, north, northeast,

and west neighbors are returned). The labels function returns the set of labels currently

assigned to a given set of pixels.

Figure 3.5 illustrates the application of the classical algorithm with union-�nd to the

binary image of Figure 3.1. Figure 3.5a) shows the labels for each pixel after the �rst pass.

Figure 3.5b) shows the union-�nd data structure indicating that the equivalence classes

Shapiro and Stockman 7

Initialize the data structures for classical connected components.

procedure initialize();

\Initialize global variable label and array PARENT."

f
\Initialize label."

label := 0;

\Initialize the union-�nd structure."

for i := 1 to MaxLab

PARENT[i] := 0;

g

Algorithm 4: Initialization for Classical Connected Components

determined in the �rst pass are ff1; 2g; f3; 7g; 4;5;6g. Figure 3.5c) shows the �nal labeling
of the image after the second pass. The connected components represent regions of the

image for which both shape and intensity properties can be computed. We will discuss

some of these properties in Section 3.5.

Using Run-Length Encoding for Connected Components Labeling As introduced

in Chapter 2, a run-length encoding of a binary image is a list of contiguous horizontal runs

of 1's. For each run, the location of the starting pixel of the run and either its length or

the location of its ending pixel must be recorded. Figure 3.6 shows a sample run-length

data structure. Each run in the image is encoded by its starting- and ending-pixel loca-

tions. (ROW, START COL) is the location of the starting pixel and (ROW, END COL)

is the location of the ending pixel, LABEL is the �eld in which the label of the connected

component to which this run belongs will be stored. It is initialized to zero and assigned

temporary values in pass 1 of the algorithm. At the end of pass 2, the LABEL �eld contains

the �nal, permanent label of the run. This structure can then be used to output the labels

back to the corresponding pixels of the output image.

8 Computer Vision: Mar 2000

Compute the connected components of a binary image.

B is the original binary image.

LB will be the labeled connected component image.

procedure classical with union-�nd(B,LB);

f
\Initialize structures."

initialize();

\Pass 1 assigns initial labels to each row L of the image."

for L := 0 to MaxRow

f
\Initialize all labels on line L to zero"

for P := 0 to MaxCol

LB[L,P] := 0;

\Process line L."

for P := 0 to MaxCol

if B[L,P] == 1 then

f
A := prior neighbors(L,P);

if isempty(A)

then f M := label; label := label + 1; g;
else M := min(labels(A));

LB[L,P] := M;

for X in labels(A) and X <> M

union(M, X, PARENT);

g
g

\Pass 2 replaces Pass 1 labels with equivalence class labels."

for L := 0 to MaxRow

for P := 0 to MaxCol

if B[L,P] == 1

then LB[L,P] := �nd(LB[L,P],PARENT);

g ;

Algorithm 5: Classical Connected Components with Union-Find

Exercise 1 Labeling Algorithm Comparison

Suppose a binary image has one foreground region, a rectangle of size 1000 by 1000. How

many times does the recursive algorithm look at (read or write) each pixel? How many

times does the classical procedure look at each pixel?

Exercise 2 Relabeling

Because equivalent labels are merged into one equivalence class, some of the initial labels

from Pass 1 are lost in Pass 2, producing a �nal labeling whose numeric sequence of labels

often has many gaps. Write a relabeling procedure that converts the labeling to one that

has a contiguous sequence of numbers from 1 to the number of components in the image.

Shapiro and Stockman 9

1 1 0 2 2 2 0 3

1 1 0 2 0 2 0 3

1 1 1 1 0 0 0 3

0 0 0 0 0 0 0 3

4 4 4 4 0 5 0 3

0 0 0 4 0 5 0 3

6 6 0 4 0 0 0 3

6 6 0 4 0 7 7 3

1 1 0 1 1 1 0 3

1 1 0 1 0 1 0 3

1 1 1 1 0 0 0 3

0 0 0 0 0 0 0 3

4 4 4 4 0 5 0 3

0 0 0 4 0 5 0 3

6 6 0 4 0 0 0 3

6 6 0 4 0 3 3 3

a) after Pass 1 c) after Pass 2

PARENT

1 2 3 4 5 6 7

0 1 0 0 0 0 3

b) union-�nd structure showing equivalence classes

Figure 3.5: The application of the classical algorithm with the union-�nd data structure to

the binary image of Figure 3.1:

Exercise 3 Run-Length Encoding

Design and implement a row-by-row labeling algorithm that uses the run-length encoding

of a binary image instead of the image itself and uses the LABEL �eld of the structure to

store the labels of the runs.

10 Computer Vision: Mar 2000

0 1 2 3 4

0 1 1 0 1 1

1 1 1 0 0 1

2 1 1 1 0 1

3 0 0 0 0 0

4 0 1 1 1 1

ROW START ROW END

0 1 2

1 3 4

2 5 6

3 0 0

4 7 7

(a) (b)

ROW START COL END COL LABEL

1 0 0 1 0

2 0 3 4 0

3 1 0 1 0

4 1 4 4 0

5 2 0 2 0

6 2 4 4 0

7 4 1 4 0

(c)

Figure 3.6: Binary image (a) and its run-length encoding (b) and (c). Each run of 1's is

encoded by its row (ROW) and the columns of its starting and ending points (START COL

and END COL). In addition, for each row of the image, ROW START points to the �rst

run of the row and ROW END points to the last run of the row. The LABEL �eld will hold

the component label of the run; it is initialized to zero.

