University of Washington - College of Engineering Spring 2024 Instructor: Justin Hsia 2024-05-16
 EE/CSE371 QUIZ 4

Name: \qquad
Student ID Number: \qquad

Please do not turn the page until 11:40.

Instructions

- This quiz contains 3 pages, including this cover page. You may use the backs of the pages for scratch work.
- The quiz is closed book and closed notes.
- Please silence and put away all cell phones and other mobile or noise-making devices.
- Remove all headphones and watches.
- You have $40(+5)$ minutes to complete this quiz.

Advice

- Read questions carefully before starting. Read allquestions first and start where you feel the most confident to maximize the use of your time.
- There may be partial credit for incomplete answers; please show your work.
- Relax.

Algorithm to ASMD [16 pts]

The pseudocode to the right is for an algorithm that computes (in place) the moving average of size 2 for an array of length Len stored in a simplified dual-port RAM (i.e., one that can read from one address and write to another addresses at the same time) with unregistered output.

- Include inputs Len, Start, and Reset.

```
L = Len
if (L < 2) return
for k from 0 to L-2:
    A = RAM[k]
    RAM[k] = (A + RAM[k+1])/2
endfor
```

- Include outputs Ready and Done. Done should remain asserted until Start is de-asserted.

Create an ASMD chart for this algorithm. Please follow the names given in the algorithm, including using RAM[i] to indicate the data stored in the RAM at address i, and choose reasonable names for control signals.

Partial Datapath [10.5 pts]

For the same moving average algorithm, all of the main datapath components are given below. Draw out a partial datapath that includes these blocks and their connections.

- DO NOT show the clock connections but DO generate the status signals.
- For control signals, you can simply attach their names on the ends of wires and buses in as many places as needed.
- For arithmetic operations, you may draw squares with the operations written inside (e.g., [-1], $[\div 2],[>]$).

