Design of Digital Circuits and Systems, Quiz 2

Memory: ROM, RAM, and Register Files

Solution Outlines

Memory Size

4-bit bidirectional rotator circuit: 128×4

- Circuit as a 4-bit data input, 2-bit rotate amount (to cover 0-3) and a 1-bit direction input, so 2⁷ = 128 total combinations.
- Output width will match data width.

Memory Addressing

Memory capacity of 512 bytes = $2^{9*}2^3 = 2^{12}$ bits.

- a) Each 4 × 4 RAM chip holds $2^{2*}2^2 = 2^4$ bits, so we need $2^{12}/2^4 = 256$ chips.
- b) Using 8-bit words (1 byte each), our 512-byte memory would be organized as 512×8 , which requires $[\log_2 512] = 9$ address bits.

Memory Implementation

The edge case logic can be expressed in SystemVerilog as:

assign r_data0 = ((r_addr0 == w_addr) & w_en) ? w_data : (r_addr0 ? reg[1] : reg[0]);

In the edge case (addresses match AND we are writing), we pass w_data , otherwise we pass the register data. This is equivalent to two cascading 2:1 MUXes, as seen below.

Notes:

- The clock connections are not shown but would need to be there in the actual circuit.
- The rightmost registers synchronize the outputs, which means that the requested data shows up 1 clock cycle later.