University of Washington - College of Engineering Spring 2024 Instructor: Justin Hsia 2024-04-04

Name:
Student ID Number:
\qquad
\qquad

Please do not turn the page until 11:55.

Instructions

- This quiz contains 3 pages, including this cover page. You may use the backs of the pages for scratch work.
- Please clearly indicate (box, circle) your final answer.
- The quiz is closed book and closed notes.
- Please silence and put away all cell phones and other mobile or noise-making devices.
- Remove all hats, headphones, and watches.
- You have 25 minutes to complete this quiz.

Advice

- Read questions carefully before starting. Read allquestions first and start where you feel the most confident to maximize the use of your time.
- There may be partial credit for incomplete answers; please show your work.
- Relax.

Finite State Machine Design

We are designing an electronic combination lock that has 3 input buttons (and corresponding signals) on a keypad - reset (R), shift (S), and A/B (L) - and 1 output signal unlock (U).

- The user can lock the door at any time by pressing reset.
- U switches the position of the deadbolt between $1 / \underline{\text { unlocked }}$ and $\theta /$ locked.
- L represents one of two input letters, $0 / \underline{a}$ or $1 / \underline{b}$.
- S changes the capitalization of the input letter, e.g., $0 / \underline{c}$ or $1 / \underline{C}$.

(A) If the combination for this lock is $\mathbf{B}-\mathbf{a}-\mathbf{b}-\mathbf{a}$, draw out a state diagram (Moore or Mealy) of this system. [12 pts]
- Each state should be given an appropriate name but you do not need binary encodings.
- As R is the reset signal, explicit transitions from each state for R do not need to be shown; transitions only need to be indicated for combinations of S and L.
- "Always" transitions should be labeled with an asterisk (*).
(B) Describe what your FSM from Part A does after a user enters the correct combination. Briefly explain your decision. [6 pts]
(C) Name one drawback of your decision described in Part B. [2 pts]
(D) Beyond the unlocked behavior (i.e., the situation discussed in Part B), what's problematic about the design of this system from the user's perspective? [2 pts]
(E) Briefly describe a potential fix to the problem mentioned in Part D. No need to redraw your state diagram, but give a rough outline of how the state diagram would need to be modified. [6 pt]

