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Relevant Course Information

❖ Quiz 5 (50 min) is this Thursday @ 11:30 am
▪ Static Timing Analysis, Pipelining, Clock Domain Crossing

▪ Scientific calculator allowed!

❖ Homework 6 due Tues (6/3)

❖ Lab 6 proposal due tomorrow (5/28)

▪ (1) Description of major project features

▪ (2) Top-level block diagram

▪ (3) Images/sketches of VGA output

❖ Lab 6 report and video due 6/9
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Review Questions

❖ What is the difference between rand & randc?

❖ How do you randomize an object?  What happens 
when this fails?

❖ Define random stability.

❖ Name a reason one might want to split constraints 
into multiple constraint blocks.
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Ranges and Sets

❖ [A:B] declares a range of integers between A and B, 
inclusive

▪ Just like the notation used in array declarations

▪ A and B can be constants and/or variables

❖ A random variable can be chosen from a set of values 
using the inside keyword

▪ Can be used with both rand and randc variables

▪ Sets can notated as the concatenation of values, ranges, and 
array variables

▪ e.g., 
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rand bit [7:0] f;
bit [7:0] vals[] = {5, 8, 13};
constraint c_fib { f inside {[1:3], vals, 21}; }
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Weighted Distributions

❖ You can define a weighted non-uniform distribution 
with the constraint expression 
<var> dist {<distribution>};

▪ Can only be used with rand variables

❖ Distribution notated in comma-separated list of 
values and their relative weights

▪ Values can be expressed by themselves or in a range or set

▪ Weights in distribution become normalized (i.e., don’t have 
to sum to 100)

▪ e.g., 
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constraint c_weight { coin dist {0:=5, 1:=5}; }
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Weighted Distributions

❖ Weight distribution operators for ranges and sets

▪ := assigns same weight to multiple values

▪ :/ distributes the assigned weight across multiple values

❖ Example:
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constraint c_dist1 {
   x dist {0:=30,
           [1:3]:=30};
}

x Probability

0

1

2

3

x Probability

0

1

2

3

constraint c_dist2 {
   x dist {0:/30,
           [1:3]:/30};
}
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Constraint Exercise #1

❖ Write out a SystemVerilog program that:

▪ Defines a class called MemRead that contains an 8-bit 
random variable data and a 4-bit random variable addr

▪ Constrain addr to 3, 4, or 5

▪ Construct a MemRead object and randomize it, making sure 
to check if the randomization succeeded
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Constraint Exercise #2

❖ Modify your MemRead class from Exercise #1 to have 
the following updated constraints:

▪ Constrain data to always be 5

▪ Constrain addr to probabilistically be 4'd0 10% of the time, 
4'd15 10% of the time, and between those two the rest of 
the time
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Constraints with Variables

❖ Instead of hardcoding constraints, use variables with 
default values

▪ Avoid magic numbers; code becomes more readable

▪ Can change before performing randomization
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class Packet;
   rand bit [31:0] length;
   constraint c_len {
      length inside [1:100]};
   }
endclass

class Packet;
   rand bit [31:0] length;
   int max_len = 100;
   constraint c_len {
      length inside [1:max_len]};
   }
endclass
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Constraints with Variables

❖ Instead of hardcoding constraints, use variables with 
default values

▪ Avoid magic numbers; code becomes more readable

▪ Can change before performing randomization
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class Packet;
   rand bit [31:0] length;
   constraint c_len {
      length inside [1:100]};
   }
endclass

class Packet;
   rand bit [31:0] length;
   int max_len = 100;
   constraint c_len {
      length inside [1:max_len]};
   }
endclass

initial begin
   Packet p1 = new();
   p1.max_len = 200;
   if (!p1.randomize())
      $finish;
end
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Implication and Equivalence Operators are included 
here as additional (and more complex) constraint 
operators.

You are not expected to study or need to use these in 
the context of this class.
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BONUS SLIDES
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Implication and Equivalence Operators

❖ Implication: A->B

▪ Same meaning, but different syntax from 
assertions!

• Equivalent to (!A || B)

▪ When used in a constraint, the solver will 
pick values such that the implication holds true

❖ Equivalence: A<->B

▪ Bidirectional implication: (A->B) && (B->A)

• Equivalent to XNOR

▪ Possible confusion that == also sometimes 
referred to as an “equivalence operator”, 
but these are different

12

A B A->B

F F T

F T T

T F F

T T T

A B A<->B

F F T

F T F

T F F

T T T
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Solution Probabilities
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rand bit x;
rand bit [1:0] y;

x y Probability

0 0

0 1

0 2

0 3

1 0

1 1

1 2

1 3
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Solution Probabilities
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rand bit x;
rand bit [1:0] y;

x y Probability

0 0

0 1

0 2

0 3

1 0

1 1

1 2

1 3
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Implication and Equivalence Examples
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x y Probability

0 0

0 1

0 2

0 3

1 0

1 1

1 2

1 3

rand bit x;
rand bit [1:0] y;
constraint c_imp2 {
   y > 0;
   (x==0)->(y==0);
}

x y Probability

0 0

0 1

0 2

0 3

1 0

1 1

1 2

1 3

rand bit x;
rand bit [1:0] y;
constraint c_imp1 {
   (x==0)->(y==0);
}
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Implication and Equivalence Examples
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x y Probability

0 0

0 1

0 2

0 3

1 0

1 1

1 2

1 3

rand bit x;
rand bit [1:0] y;
constraint c_imp2 {
   y > 0;
   (x==0)->(y==0);
}

x y Probability

0 0

0 1

0 2

0 3

1 0

1 1

1 2

1 3

rand bit x;
rand bit [1:0] y;
constraint c_imp1 {
   (x==0)->(y==0);
}
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Implication and Equivalence Examples
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rand bit x;
rand bit [1:0] y;
constraint c_eqv1 {
   (x==0)<->(y==0);
}  // pick x first

x y Probability

0 0

0 1

0 2

0 3

1 0

1 1

1 2

1 3

rand bit x;
rand bit [1:0] y;
constraint c_eqv2 {
   (x==0)<->(y==0);
}  // pick y first

x y Probability

0 0

1 0

0 1

1 1

0 2

1 2

0 3

1 3
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Implication and Equivalence Examples
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rand bit x;
rand bit [1:0] y;
constraint c_eqv1 {
   (x==0)<->(y==0);
}  // pick x first

x y Probability

0 0

0 1

0 2

0 3

1 0

1 1

1 2

1 3

rand bit x;
rand bit [1:0] y;
constraint c_eqv2 {
   (x==0)<->(y==0);
}  // pick y first

x y Probability

0 0

1 0

0 1

1 1

0 2

1 2

0 3

1 3
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Technology

Break
19



EE/CSE371, Spring 2025L17:  Proposal Workshop

Lab 6 Proposal Workshop

❖ Rough schedule:

▪ Pairing 1:  11:20 – 11:35

▪ Pairing 2:  11:35 – 11:50

▪ Pairing 3:  11:50 – 12:05

▪ Pairing 4:  12:05 – 12:20

❖ Notes:

▪ Make sure that you introduce and talk about both projects

▪ Be curious – ask questions!

• Clarifications, point out potential issues, dive into implementation 
details

▪ Course staff will be circling to listen in and answer questions
20
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