
EE/CSE371, Spring 2025L17: Proposal Workshop

Design of Digital
Circuits and Systems
Proposal Workshop

Instructor: Vikram Iyer

Teaching Assistants:

Ariel Kao Josh Wentzien

Selim Saridede Jared Yoder

Derek Thorp

Adapted from material by Justin Hisa

EE/CSE371, Spring 2025L17: Proposal Workshop

Relevant Course Information

❖ Quiz 5 (50 min) is this Thursday @ 11:30 am
▪ Static Timing Analysis, Pipelining, Clock Domain Crossing

▪ Scientific calculator allowed!

❖ Homework 6 due Tues (6/3)

❖ Lab 6 proposal due tomorrow (5/28)

▪ (1) Description of major project features

▪ (2) Top-level block diagram

▪ (3) Images/sketches of VGA output

❖ Lab 6 report and video due 6/9

2

EE/CSE371, Spring 2025L17: Proposal Workshop

Review Questions

❖ What is the difference between rand & randc?

❖ How do you randomize an object? What happens
when this fails?

❖ Define random stability.

❖ Name a reason one might want to split constraints
into multiple constraint blocks.

3

EE/CSE371, Spring 2025L17: Proposal Workshop

Ranges and Sets

❖ [A:B] declares a range of integers between A and B,
inclusive

▪ Just like the notation used in array declarations

▪ A and B can be constants and/or variables

❖ A random variable can be chosen from a set of values
using the inside keyword

▪ Can be used with both rand and randc variables

▪ Sets can notated as the concatenation of values, ranges, and
array variables

▪ e.g.,

4

rand bit [7:0] f;
bit [7:0] vals[] = {5, 8, 13};
constraint c_fib { f inside {[1:3], vals, 21}; }

EE/CSE371, Spring 2025L17: Proposal Workshop

Weighted Distributions

❖ You can define a weighted non-uniform distribution
with the constraint expression
<var> dist {<distribution>};

▪ Can only be used with rand variables

❖ Distribution notated in comma-separated list of
values and their relative weights

▪ Values can be expressed by themselves or in a range or set

▪ Weights in distribution become normalized (i.e., don’t have
to sum to 100)

▪ e.g.,

5

constraint c_weight { coin dist {0:=5, 1:=5}; }

EE/CSE371, Spring 2025L17: Proposal Workshop

Weighted Distributions

❖ Weight distribution operators for ranges and sets

▪ := assigns same weight to multiple values

▪ :/ distributes the assigned weight across multiple values

❖ Example:

6

constraint c_dist1 {
 x dist {0:=30,
 [1:3]:=30};
}

x Probability

0

1

2

3

x Probability

0

1

2

3

constraint c_dist2 {
 x dist {0:/30,
 [1:3]:/30};
}

EE/CSE371, Spring 2025L17: Proposal Workshop

Constraint Exercise #1

❖ Write out a SystemVerilog program that:

▪ Defines a class called MemRead that contains an 8-bit
random variable data and a 4-bit random variable addr

▪ Constrain addr to 3, 4, or 5

▪ Construct a MemRead object and randomize it, making sure
to check if the randomization succeeded

7

EE/CSE371, Spring 2025L17: Proposal Workshop

Constraint Exercise #2

❖ Modify your MemRead class from Exercise #1 to have
the following updated constraints:

▪ Constrain data to always be 5

▪ Constrain addr to probabilistically be 4'd0 10% of the time,
4'd15 10% of the time, and between those two the rest of
the time

8

EE/CSE371, Spring 2025L17: Proposal Workshop

Constraints with Variables

❖ Instead of hardcoding constraints, use variables with
default values

▪ Avoid magic numbers; code becomes more readable

▪ Can change before performing randomization

9

class Packet;
 rand bit [31:0] length;
 constraint c_len {
 length inside [1:100]};
 }
endclass

class Packet;
 rand bit [31:0] length;
 int max_len = 100;
 constraint c_len {
 length inside [1:max_len]};
 }
endclass

EE/CSE371, Spring 2025L17: Proposal Workshop

Constraints with Variables

❖ Instead of hardcoding constraints, use variables with
default values

▪ Avoid magic numbers; code becomes more readable

▪ Can change before performing randomization

10

class Packet;
 rand bit [31:0] length;
 constraint c_len {
 length inside [1:100]};
 }
endclass

class Packet;
 rand bit [31:0] length;
 int max_len = 100;
 constraint c_len {
 length inside [1:max_len]};
 }
endclass

initial begin
 Packet p1 = new();
 p1.max_len = 200;
 if (!p1.randomize())
 $finish;
end

EE/CSE371, Spring 2025L17: Proposal Workshop

Implication and Equivalence Operators are included
here as additional (and more complex) constraint
operators.

You are not expected to study or need to use these in
the context of this class.

11

BONUS SLIDES

EE/CSE371, Spring 2025L17: Proposal Workshop

Implication and Equivalence Operators

❖ Implication: A->B

▪ Same meaning, but different syntax from
assertions!

• Equivalent to (!A || B)

▪ When used in a constraint, the solver will
pick values such that the implication holds true

❖ Equivalence: A<->B

▪ Bidirectional implication: (A->B) && (B->A)

• Equivalent to XNOR

▪ Possible confusion that == also sometimes
referred to as an “equivalence operator”,
but these are different

12

A B A->B

F F T

F T T

T F F

T T T

A B A<->B

F F T

F T F

T F F

T T T

EE/CSE371, Spring 2025L17: Proposal Workshop

Solution Probabilities

13

rand bit x;
rand bit [1:0] y;

x y Probability

0 0

0 1

0 2

0 3

1 0

1 1

1 2

1 3

EE/CSE371, Spring 2025L17: Proposal Workshop

Solution Probabilities

14

rand bit x;
rand bit [1:0] y;

x y Probability

0 0

0 1

0 2

0 3

1 0

1 1

1 2

1 3

EE/CSE371, Spring 2025L17: Proposal Workshop

Implication and Equivalence Examples

15

x y Probability

0 0

0 1

0 2

0 3

1 0

1 1

1 2

1 3

rand bit x;
rand bit [1:0] y;
constraint c_imp2 {
 y > 0;
 (x==0)->(y==0);
}

x y Probability

0 0

0 1

0 2

0 3

1 0

1 1

1 2

1 3

rand bit x;
rand bit [1:0] y;
constraint c_imp1 {
 (x==0)->(y==0);
}

EE/CSE371, Spring 2025L17: Proposal Workshop

Implication and Equivalence Examples

16

x y Probability

0 0

0 1

0 2

0 3

1 0

1 1

1 2

1 3

rand bit x;
rand bit [1:0] y;
constraint c_imp2 {
 y > 0;
 (x==0)->(y==0);
}

x y Probability

0 0

0 1

0 2

0 3

1 0

1 1

1 2

1 3

rand bit x;
rand bit [1:0] y;
constraint c_imp1 {
 (x==0)->(y==0);
}

EE/CSE371, Spring 2025L17: Proposal Workshop

Implication and Equivalence Examples

17

rand bit x;
rand bit [1:0] y;
constraint c_eqv1 {
 (x==0)<->(y==0);
} // pick x first

x y Probability

0 0

0 1

0 2

0 3

1 0

1 1

1 2

1 3

rand bit x;
rand bit [1:0] y;
constraint c_eqv2 {
 (x==0)<->(y==0);
} // pick y first

x y Probability

0 0

1 0

0 1

1 1

0 2

1 2

0 3

1 3

EE/CSE371, Spring 2025L17: Proposal Workshop

Implication and Equivalence Examples

18

rand bit x;
rand bit [1:0] y;
constraint c_eqv1 {
 (x==0)<->(y==0);
} // pick x first

x y Probability

0 0

0 1

0 2

0 3

1 0

1 1

1 2

1 3

rand bit x;
rand bit [1:0] y;
constraint c_eqv2 {
 (x==0)<->(y==0);
} // pick y first

x y Probability

0 0

1 0

0 1

1 1

0 2

1 2

0 3

1 3

EE/CSE371, Spring 2025L17: Proposal Workshop

Technology

Break
19

EE/CSE371, Spring 2025L17: Proposal Workshop

Lab 6 Proposal Workshop

❖ Rough schedule:

▪ Pairing 1: 11:20 – 11:35

▪ Pairing 2: 11:35 – 11:50

▪ Pairing 3: 11:50 – 12:05

▪ Pairing 4: 12:05 – 12:20

❖ Notes:

▪ Make sure that you introduce and talk about both projects

▪ Be curious – ask questions!

• Clarifications, point out potential issues, dive into implementation
details

▪ Course staff will be circling to listen in and answer questions
20

	Slide 1: Design of Digital Circuits and Systems Proposal Workshop
	Slide 2: Relevant Course Information
	Slide 3: Review Questions
	Slide 4: Ranges and Sets
	Slide 5: Weighted Distributions
	Slide 6: Weighted Distributions
	Slide 7: Constraint Exercise #1
	Slide 8: Constraint Exercise #2
	Slide 9: Constraints with Variables
	Slide 10: Constraints with Variables
	Slide 11
	Slide 12: Implication and Equivalence Operators
	Slide 13: Solution Probabilities
	Slide 14: Solution Probabilities
	Slide 15: Implication and Equivalence Examples
	Slide 16: Implication and Equivalence Examples
	Slide 17: Implication and Equivalence Examples
	Slide 18: Implication and Equivalence Examples
	Slide 19
	Slide 20: Lab 6 Proposal Workshop

