Design of Digital Circuits and Systems Proposal Workshop

Instructor: Vikram lyer

Teaching Assistants:

Ariel Kao Selim Saridede Derek Thorp

Josh Wentzien

Jared Yoder

Adapted from material by Justin Hisa

Relevant Course Information

- Quiz 5 (50 min) is this Thursday @ 11:30 am
 - Static Timing Analysis, Pipelining, Clock Domain Crossing
 - Scientific calculator allowed!
- Homework 6 due Tues (6/3)
- Lab 6 proposal due tomorrow (5/28)
 - (1) Description of major project features
 - (2) Top-level block diagram
 - (3) Images/sketches of VGA output
- Lab 6 report and video due 6/9

Review Questions

What is the difference between rand & randc? rand is uniformly distributed (like dice coll) randc is cyclical distributed (like drawing card u/out replacement)
How do you randomize an object? What happens when this fails? Menhead mr = new() if(imr. randomize()) % Define random stability. Lor the same seed value are random sequence

Name a reason one might want to split constraints into multiple constraint blocks.

Ranges and Sets

- [A:B] declares a range of integers between A and B, inclusive
 - Just like the notation used in array declarations
 - A and B can be constants and/or variables
- A random variable can be chosen from a set of values using the inside keyword
 - Can be used with both rand and randc variables
 - Sets can notated as the concatenation of values, ranges, and array variables
 I I Z 3 5 8 13 21

• e.g., rand bit [7:0] f; bit [7:0] vals[] = {5, 8, 13}; /,2,3 \$, 2,13 constraint c_fib { f inside {[1:3], vals, 21}; }

Weighted Distributions

- You can define a weighted non-uniform distribution
 with the constraint expression
 <var> dist {<distribution>};
 - Can only be used with rand variables
- Distribution notated in comma-separated list of values and their relative weights
 - Values can be expressed by themselves or in a range or set
 - Weights in distribution become normalized (*i.e.*, don't have to sum to 100)

• e.q.,

constraint c_weight { coin dist {0:=5, 1:=5}; }

Weighted Distributions

- Weight distribution operators for ranges and sets
 - = assigns same weight to multiple values
 - : / distributes the assigned weight across multiple values
- Example:

```
constraint c_dist1 {
    x dist {0:=30,
        [1:3]:=30};
}
```


Constraint Exercise #1

- Write out a SystemVerilog program that:
 - Defines a class called MemRead that contains an 8-bit random variable data and a 4-bit random variable addr
 - Constrain addr to 3, 4, or 5
 - Construct a MemRead object and randomize it, making sure to check if the randomization succeeded

Constraint Exercise #2

- Modify your MemRead class from Exercise #1 to have the following updated constraints:
 - Constrain data to always be 5
 - Constrain addr to probabilistically be 4 'd0 10% of the time, 4 'd15 10% of the time, and between those two the rest of the time

Constraints with Variables

- Instead of hardcoding constraints, use variables with default values
 - Avoid magic numbers; code becomes more readable
 - Can change before performing randomization

Constraints with Variables

- Instead of hardcoding constraints, use variables with default values
 - Avoid magic numbers; code becomes more readable
 - Can change before performing randomization

BONUS SLIDES

Implication and Equivalence Operators are included here as additional (and more complex) constraint operators.

You are *not* expected to study or need to use these in the context of this class.

Implication and Equivalence Operators

- Implication: A->B
 - Same meaning, but different syntax from assertions!
 - Equivalent to (!A || B)
 - When used in a constraint, the solver will pick values such that the implication holds true
- ✤ Equivalence: A<->B
 - Bidirectional implication: (A->B) && (B->A)
 - Equivalent to XNOR
 - Possible confusion that == also sometimes referred to as an "equivalence operator", but these are different

Solution Probabilities

rand bit x; rand bit [<mark>1:0</mark>] y;

х	У	Probability
Θ	0	
Θ	1	
Θ	2	
Θ	3	1 1 1
1	0	1 1 1
1	1	
1	2	
1	3	

Solution Probabilities

rand bit x; //0, 1 rand bit [1:0] y; //00, 01, 10, 11 //un constrained!

х	У	Probability
Θ	0	1/8
Θ	1	1/8
0	2	1/8
0	3	1/8
1	0	1/8
1	1	1/8
1	2	1/8
1	3	1/8

Implication and Equivalence Examples

Х	У	Probability
Θ	0	
0	1	
0	2	
0	3	
1	0	
1	1	
1	2	
1	3	

rand bit x; rand bit [1:0] y; constraint c_imp2 { y > 0; (x==0)->(y==0); }

Х	У	Probability
Θ	0	
Θ	1	
0	2	
0	3	
1	0	
1	1	
1	2	
1	3	

50%

5023

Implication and Equivalence Examples

rand bit x;
rand bit
$$[1:0]$$
 y;
constraint c_imp2 {
 $y > 0$;
 $(x==0) ->(y==0)$;
} since y cannot be 0, neither can X

Х	У	Probability
Θ	٥ <mark>x</mark>	6
Θ	1×	0
Θ	2 <mark>×</mark>	0
Θ	3×	6
1	0 <u>×</u>	\mathcal{O}
1	1	1/3
1	2	1/3
1	3	1/3

Implication and Equivalence Examples

Х	У	Probability
Θ	0	
Θ	1	
0	2	
0	3	
1	0	
1	1	
1	2	
1	3	

rand bit x;
rand bit [1:0] y;
<pre>constraint c_eqv2 {</pre>
(x = = 0) < -> (y = = 0);
} // pick y first

Х	У	Probability
Θ	0	
1	Θ	
Θ	1	
1	1	
Θ	2	
1	2	
0	3	
1	3	

Implication and Equivalence Examples

Technology

Break

Lab 6 Proposal Workshop

- Rough schedule:
 - Pairing 1: 11:20 11:35
 - Pairing 2: 11:35 11:50
 - Pairing 3: 11:50 12:05
 - Pairing 4: 12:05 12:20
- Notes:
 - Make sure that you introduce and talk about *both* projects
 - Be curious ask questions!
 - Clarifications, point out potential issues, dive into implementation details
 - Course staff will be circling to listen in and answer questions