
EE/CSE371, Spring 2025L16: Advanced Testing II

Design of Digital
Circuits and Systems
Testing: Randomization

Instructor: Vikram Iyer

Teaching Assistants:

Ariel Kao Josh Wentzien

Selim Saridede Jared Yoder

Derek Thorp

Adapted from material by Justin Hisa

EE/CSE371, Spring 2025L16: Advanced Testing II

Relevant Course Information

❖ Quiz 4 (Algorithms to Hardware) starts at 11:40 am

❖ Quiz 5 (STA, Pipelining, CDC) is next Thursday

❖ Lab 6 proposal due next week (5/28)

▪ (1) Description of major project features

▪ (2) Top-level block diagram

▪ (3) Images/sketches of VGA output

▪ “Proposal Workshop” in lecture on 5/27

❖ Homework 6 (Advanced Testing) released, due on 6/3

2

EE/CSE371, Spring 2025L16: Advanced Testing II

Review: Assertions

❖ Reminders:

▪ |-> is overlapped implication

▪ |=> is non-overlapped implication

▪ ##𝑁 delays next (RHS) sequence by 𝑁 cycles

▪ [*𝑁] means 𝑁 consecutive repetitions of the LHS

▪ [=𝑁] means 𝑁 non-consecutive repetitions of the LHS
• Any 𝑁 above can be replaced by the inclusive range 𝐴:𝐵

❖ What does the following property check for?

▪ Start |=> a ##1 b [*1:3] ##1 c

3

EE/CSE371, Spring 2025L16: Advanced Testing II

Review: Assertions

❖ Reminders:

▪ |-> is overlapped implication

▪ |=> is non-overlapped implication

▪ ##𝑁 delays next (RHS) sequence by 𝑁 cycles

▪ [*𝑁] means 𝑁 consecutive repetitions of the LHS

▪ [=𝑁] means 𝑁 non-consecutive repetitions of the LHS
• Any 𝑁 above can be replaced by the inclusive range 𝐴:𝐵

❖ Write out the concurrent assertion that uses:

▪ Start |=> a ##1 b [*1:3] ##1 c

4

EE/CSE371, Spring 2025L16: Advanced Testing II

Review: Assertions

https://www.edaplayground.com/x/QUpq

❖ Reminders:

▪ |-> is overlapped implication

▪ |=> is non-overlapped implication

▪ ##𝑁 delays next (RHS) sequence by 𝑁 cycles

▪ [*𝑁] means 𝑁 consecutive repetitions of the LHS

▪ [=𝑁] means 𝑁 non-consecutive repetitions of the LHS
• Any 𝑁 above can be replaced by the inclusive range 𝐴:𝐵

❖ Test the concurrent assertion yourself!

▪ Start |=> a ##1 b [*1:3] ##1 c

▪ https://www.edaplayground.com/x/QUpq

5

https://www.edaplayground.com/x/QUpq

EE/CSE371, Spring 2025L16: Advanced Testing II

Blocks Revisited

❖ So far, we have gotten away with using module for
everything

▪ A module is intended to describe hardware

❖ A program block provides an entry point to the
execution of testbenches

▪ Similar definition and instantiation syntax to a module, but
cannot contain an always block

▪ Can be defined within a module

▪ Not strictly necessary – addresses some minor data race
interactions between the dut and testbench

6

EE/CSE371, Spring 2025L16: Advanced Testing II

Why Randomize?

❖ Directed testing

▪ Only checks for anticipated bugs, so you only find bugs that
you think might be there to begin with

▪ Scales poorly as requirements increase and change

▪ Relatively little upfront work – manually or automatically
checker

❖ Random Testing

▪ Can check for unanticipated bugs

▪ Scales relatively well as requirements increase and change

▪ More upfront work – create randomization environment
and model/scoreboard to compute expected values

7

EE/CSE371, Spring 2025L16: Advanced Testing II

What to Randomize?

❖ Different goals of testing

▪ Correctness: does the system do the “right” thing on
expected states & inputs

▪ Robustness: does the system do something “reasonable” on
unexpected states & inputs

❖ Much more should be randomized than your input:

▪ Inputs: primary input data, encapsulated input data, delays,
test order

▪ Configurations: device, environment configuration

▪ Erroneous state: protocol exceptions, errors, violations

▪ Seeding: random test seed
8

EE/CSE371, Spring 2025L16: Advanced Testing II

Random Testing in SystemVerilog

❖ We can create Constrained Random Tests (CRTs)

▪ Test code uses a stream of constrained random values to
create input to the DUT

• Random variables and constraints must be defined within a class

▪ The inputs and behavior will change based on the seed of its
pseudo-random number generator (PRNG)

❖ Random stability

▪ Random number generation needs to be reproducible,
otherwise testing failures are not easily reproducible

▪ [extra] thread locality means each thread has independent
PRNGs; hierarchical seeding means that different parts of
your code within the thread inherit seeding

9

EE/CSE371, Spring 2025L16: Advanced Testing II

Random Number Functions

❖ Functions that return a random number from within a
specified distribution, e.g.,

▪ $random – flat distribution of signed 32-bit numbers

▪ $urandom – flat distribution of unsigned 32-bit numbers

▪ $urandom_range – flat distribution of specified range

▪ $dist_normal – bell-shaped distribution

❖ Not particularly useful by themselves

▪ Pseudo-randomness between subsequent calls but stability
of each call for same seed

▪ More efficient to use directed testing on known edge cases
or more effective to test all input combinations

• Unconstrained functions
10

EE/CSE371, Spring 2025L16: Advanced Testing II

Changing Seed

❖ Method srandom() sets the random seed for a
particular part of the hierarchy

▪

❖ Warnings [extras]

▪ This gets more complicated the more simultaneous PRNGs
you have to deal with

▪ Careful with multiple calls to srandom on same component

▪ Ordering of random function calls and randomization
matters

11

// change seed on thread
process pt;
pt = process::self();
pt.srandom(<number>);

// change seed on object
MyClass obj;
obj = new();
obj.srandom(<number>);

EE/CSE371, Spring 2025L16: Advanced Testing II

Technology

Break
12

EE/CSE371, Spring 2025L16: Advanced Testing II

Constraints

❖ Unconstrained randomization

▪ Search/sample space quickly becomes unwieldy

▪ Good portion of search/sample space may be completely
nonsensical

❖ Can introduce conditions/constraints for random
variables within a class object

▪ Restricts the search/sample space

▪ A way to express the relationships between variables

▪ Your simulator’s constraint solver will attempt to solve all of
the given constraints simultaneously
• This can fail and its behavior is implementation-dependent

13

EE/CSE371, Spring 2025L16: Advanced Testing II

Random Variables

❖ Keywords rand/randc make randomizable variable

▪ Can only apply to integral datatypes (includes enums)

▪ rand variable values distributed uniformly

▪ randc variable values distributed cyclically

▪ e.g.,

❖ Call randomize method to assign random values

▪ Can be called multiple times

▪ Can also pass random variable names as arguments to
randomize only a subset

▪ e.g.,

14

rand bit [1:0] x;
randc bit [1:0] y;

MyClass obj = new();
obj.randomize(); // equiv: obj.randomize(x,y);

EE/CSE371, Spring 2025L16: Advanced Testing II

Defining Constraints

❖ Constraints named and specified with the
constraint keyword and curly braces

▪ Each constraint expression (separated by semi-colons)
should contain at least one random variable and generally
only one comparison operator (e.g., <, <=, ==, >=, >)

▪ Can have multiple expressions within a constraint and
multiple constraints within a class

❖ If all constraints cannot be met simultaneously,
randomize will return 0 – always check for this!

15

class Child;
 rand bit [7:0] age;
 constraint c_teen {age > 12; age < 20;}
endclass

EE/CSE371, Spring 2025L16: Advanced Testing II

Bidirectional Constraints

❖ All constraint expressions are active simultaneously

❖ Exercise: what are all possible outcomes from
randomize()?

16

rand bit [15:0] r, s, t;
constraint c_exer {
 r < t;
 s == r;
 t < 10;
 s > 5;
}

r s t

Valid solutions:

EE/CSE371, Spring 2025L16: Advanced Testing II

Example Constrained Testbench

17

program testbench;

 class Packet;
 rand bit [31:0] src, dst, data[8];
 randc bit [7:0] kind;
 constraint c_src {
 src > 10;
 src < 15;
 }
 constraint c_dst {dst < 32;}
 endclass

 Packet p;
 initial begin
 p = new();
 if (!p.randomize())
 $finish;
 end

endprogram

EE/CSE371, Spring 2025L16: Advanced Testing II

Constraint Exercise #1

❖ Write out a SystemVerilog program that:

▪ Defines a class called MemRead that contains an 8-bit
random variable data and a 4-bit random variable addr

▪ Constrain addr to 3, 4, or 5

▪ Construct a MemRead object and randomize it, making sure
to check if the randomization succeeded

18

EE/CSE371, Spring 2025L16: Advanced Testing II

Constraint Exercise #1

❖ Write out a SystemVerilog program that:

▪ Defines a class called MemRead that contains an 8-bit
random variable data and a 4-bit random variable addr

▪ Constrain addr to 3, 4, or 5

▪ Construct a MemRead object and randomize it, making sure
to check if the randomization succeeded

19

	Slide 1: Design of Digital Circuits and Systems Testing: Randomization
	Slide 2: Relevant Course Information
	Slide 3: Review: Assertions
	Slide 4: Review: Assertions
	Slide 5: Review: Assertions
	Slide 6: Blocks Revisited
	Slide 7: Why Randomize?
	Slide 8: What to Randomize?
	Slide 9: Random Testing in SystemVerilog
	Slide 10: Random Number Functions
	Slide 11: Changing Seed
	Slide 12
	Slide 13: Constraints
	Slide 14: Random Variables
	Slide 15: Defining Constraints
	Slide 16: Bidirectional Constraints
	Slide 17: Example Constrained Testbench
	Slide 18: Constraint Exercise #1
	Slide 19: Constraint Exercise #1

